E75 10248

INVESTIGATION OF USE OF SPACE DATA IN WATERSHED HYDROLOGY

CR 14254

"Made available under NASA sponsorship
to the interest of early and wide dismination of Earth Resources Survey
Program information and without liability
and use made thereof."

Bruce J. Blanchard
USDA-ARS
Southern Great Plains Research Watershed
Chickasha, Oklahoma 73018

(E75-10248) INVESTIGATION OF USE OF SPACE DATA IN WATERSHED HYDROLOGY Final Report, 1 Jul. 1972 - 1 Jul. 1974 (Agricultural Research Service, Chickasha) 127 p HC \$5.75

N75-21770

Unclas 00248

CSCL 08H G3/43

January 25, 1975
Final Report
for Period
July 1, 1972 - July 1, 1974

Contract S-70251-AG, Task #5

1011A

Prepared for

GODDARD SPACE FLIGHT CENTER Greenbelt, Maryland 20771

RECEIVED

APR 17 1975 SIS/902.6

Original photography may be purchased from: EROS Data Center 10th and Dakota Avenue Sioux Falls, SD 57198

INVESTIGATION OF USE OF SPACE DATA IN WATERSHED HYDROLOGY

Bruce J. Blanchard
USDA-ARS
Southern Great Plains Research Watershed
Chickasha, Oklahoma 73018

January 25, 1975
Final Report
for Period
July 1, 1972 - July 1, 1974
Contract S-70251-AG, Task #5

Prepared for

GODDARD SPACE FLIGHT CENTER

Greenbelt, Maryland 20771

	s ² 1		
SHEET 1. Report No.	2.	3. Recipie	ent's Accession No.
. Vitle and Subtitle	1 1/31/20 A	5. Report	Date
Investigation of Use of Space Data in Wa	at another third is 1	Tonuos	y 25, 1975
investigation or ose of Space Data in wa	acerened mydror	ogy	· · · · · · · · · · · · · · · · · · ·
	19.154		
. Author(s)	9 mg 45 9 mg 43	8. Perfore	ning Organization Repo
Bruce J. Blanchard	<u> </u>	No.	
Performing Organization Name and Address		10. Projec	ct/Task/Work Unit No.
USDA-ARS		3 <u>764-3</u>	<u> </u>
Southern Great Plains Watershed Research Chickasha, Oklahoma 73018	n Center		act/Grant No.
Chickasha, Oktaholia /3010	,	6-70251	· · · · · · · · · · · · · · · · · · ·
2. Sponsoring Organization Name and Address			#431-641-14-04-
·	· · · · · · · · · · · · · · · · · · ·	13. Type Cover	of Report & Period
Goddard Space Flight Center		Type I	ed II Final Report
Greenbelt, Maryland 20771 Dr. Vince Solomonson - Technical Monitor			, 72 - July 1,
pr. vince botomonson - legunital monitor	E	14.	
5. Supplementary Notes	· · · · · · · · · · · · · · · · · · ·		
4			
			* .
two scenes, both with dry surface condit ships defined by both combinations of di	igital data wer	e tested on an	independent set
ships defined by both combinations of di of 10 watersheds and on an additional 22 the ERTS data proved better than coeffic	igital data wer 2 subwatersheds	e tested on an • Coefficients	independent set predicted with
ships defined by both combinations of di of 10 watersheds and on an additional 22	igital data wer 2 subwatersheds	e tested on an • Coefficients	independent set predicted with
ships defined by both combinations of di of 10 watersheds and on an additional 22	igital data wer 2 subwatersheds	e tested on an • Coefficients	independent set predicted with
ships defined by both combinations of di of 10 watersheds and on an additional 22 the ERTS data proved better than coeffic	igital data wer 2 subwatersheds	e tested on an • Coefficients	independent set
ships defined by both combinations of di of 10 watersheds and on an additional 22 the ERTS data proved better than coeffice. 7. Key Words and Document Analysis. 17a. Descriptors Watershed runoff, Watershed models, Flood Digital ERTS data Watershed characteristics	igital data wer 2 subwatersheds cients develope	e tested on an . Coefficients d with conventi	independent set predicted with onal methods.
ships defined by both combinations of di of 10 watersheds and on an additional 22 the ERTS data proved better than coeffic 7. Key Words and Document Analysis. 17a. Descriptors Watershed runoff, Watershed models, Flood Digital ERTS data	igital data wer 2 subwatersheds cients develope	e tested on an . Coefficients d with conventi	independent set predicted with onal methods.
ships defined by both combinations of di of 10 watersheds and on an additional 22 the ERTS data proved better than coeffice 7. Key Words and Document Analysis. 17a. Descriptors Watershed runoff, Watershed models, Flood Digital ERTS data Watershed characteristics	igital data wer 2 subwatersheds cients develope	e tested on an . Coefficients d with conventi	independent set predicted with onal methods.
ships defined by both combinations of di of 10 watersheds and on an additional 22 the ERTS data proved better than coeffic 7. Key Words and Document Analysis. 17a. Descriptors Watershed runoff, Watershed models, Floo Digital ERTS data Watershed characteristics	igital data wer 2 subwatersheds cients develope	e tested on an . Coefficients d with conventi	independent set predicted with onal methods.
ships defined by both combinations of di of 10 watersheds and on an additional 22 the ERTS data proved better than coeffice 7. Key Words and Document Analysis. 17a. Descriptors Watershed runoff, Watershed models, Flood Digital ERTS data Watershed characteristics	igital data wer 2 subwatersheds cients develope	e tested on an . Coefficients d with conventi	independent set predicted with onal methods.
ships defined by both combinations of di of 10 watersheds and on an additional 22 the ERTS data proved better than coeffic 7. Key Words and Document Analysis. 17a. Descriptors Watershed runoff, Watershed models, Floo Digital ERTS data Watershed characteristics	igital data wer 2 subwatersheds cients develope	e tested on an . Coefficients d with conventi	independent set predicted with onal methods.
ships defined by both combinations of di of 10 watersheds and on an additional 22 the ERTS data proved better than coeffice. 7. Key Words and Document Analysis. 17a. Descriptors Watershed runoff, Watershed models, Flood Digital ERTS data Watershed characteristics Discriminant analysis	igital data wer 2 subwatersheds cients develope	e tested on an . Coefficients d with conventi	independent set predicted with onal methods.
ships defined by both combinations of di of 10 watersheds and on an additional 22 the ERTS data proved better than coeffice. 7. Key Words and Document Analysis. 17a. Descriptors Watershed runoff, Watershed models, Flood Digital ERTS data Watershed characteristics Discriminant analysis	igital data wer 2 subwatersheds cients develope	e tested on an . Coefficients d with conventi	independent set predicted with onal methods.
ships defined by both combinations of di of 10 watersheds and on an additional 22 the ERTS data proved better than coeffice. 7. Key Words and Document Analysis. 17a. Descriptors Watershed runoff, Watershed models, Flood Digital ERTS data Watershed characteristics Discriminant analysis	igital data wer 2 subwatersheds cients develope	e tested on an . Coefficients d with conventi	independent set predicted with onal methods.
ships defined by both combinations of di of 10 watersheds and on an additional 22 the ERTS data proved better than coeffice. 7. Key Words and Document Analysis. 17a. Descriptors Watershed runoff, Watershed models, Flood Digital ERTS data Watershed characteristics Discriminant analysis	igital data wer 2 subwatersheds cients develope	e tested on an . Coefficients d with conventi	independent set predicted with onal methods.
ships defined by both combinations of di of 10 watersheds and on an additional 22 the ERTS data proved better than coeffice. 7. Key Words and Document Analysis. 17a. Descriptors Watershed runoff, Watershed models, Flood Digital ERTS data Watershed characteristics Discriminant analysis	igital data wer 2 subwatersheds cients develope	e tested on an . Coefficients d with conventi	independent set predicted with onal methods.
ships defined by both combinations of di of 10 watersheds and on an additional 22 the ERTS data proved better than coeffice. 7. Key Words and Document Analysis. 17a. Descriptors Watershed runoff, Watershed models, Flood Digital ERTS data Watershed characteristics Discriminant analysis	igital data wer 2 subwatersheds cients develope	e tested on an . Coefficients d with conventi	independent set predicted with onal methods.
ships defined by both combinations of di of 10 watersheds and on an additional 22 the ERTS data proved better than coeffice. 7. Key Words and Document Analysis. 17a. Descriptors Watershed runoff, Watershed models, Flood Digital ERTS data Watershed characteristics Discriminant analysis	igital data wer 2 subwatersheds cients develope	e tested on an . Coefficients d with conventi	independent set predicted with onal methods.
ships defined by both combinations of di of 10 watersheds and on an additional 22 the ERTS data proved better than coeffice. 7. Key Words and Document Analysis. 17a. Descriptors Watershed runoff, Watershed models, Flood Digital ERTS data Watershed characteristics Discriminant analysis 7b. Identifiers/Open-Ended Terms	igital data wer 2 subwatersheds cients develope	e tested on an . Coefficients d with conventi	independent set predicted with onal methods.
ships defined by both combinations of di of 10 watersheds and on an additional 22 the ERTS data proved better than coeffice. 7. Key Words and Document Analysis. 17a. Descriptors Watershed runoff, Watershed models, Flood Digital ERTS data Watershed characteristics Discriminant analysis 7b. Identifiers/Open-Ended Terms	igital data wer 2 subwatersheds cients develope	e tested on an . Coefficients d with conventi	independent set predicted with onal methods.
ships defined by both combinations of di of 10 watersheds and on an additional 22 the ERTS data proved better than coeffice. 7. Key Words and Document Analysis. 17a. Descriptors Watershed runoff, Watershed models, Flood Digital ERTS data Watershed characteristics Discriminant analysis 7b. Identifiers/Open-Ended Terms	igital data wer 2 subwatersheds cients develope ods, Flood pred	e tested on an Coefficients with conventi	independent set predicted with onal methods.
ships defined by both combinations of di of 10 watersheds and on an additional 22 the ERTS data proved better than coeffice. 7. Key Words and Document Analysis. 17a. Descriptors Watershed runoff, Watershed models, Flood Digital ERTS data Watershed characteristics Discriminant analysis 7b. Identifiers/Open-Ended Terms	igital data wer 2 subwatersheds cients developed ods, Flood pred	e tested on an Coefficients with conventi	independent set predicted with onal methods.
ships defined by both combinations of di of 10 watersheds and on an additional 22 the ERTS data proved better than coeffice. 7. Key Words and Document Analysis. 17a. Descriptors Watershed runoff, Watershed models, Flood Digital ERTS data Watershed characteristics Discriminant analysis 7b. Identifiers/Open-Ended Terms	igital data wer 2 subwatersheds cients developed ods, Flood pred	e tested on an Coefficients with conventi	independent set predicted with onal methods. sensing
ships defined by both combinations of di of 10 watersheds and on an additional 22 the ERTS data proved better than coeffice 7. Key Words and Document Analysis. 17c. Descriptors Watershed runoff, Watershed models, Flood Digital ERTS data Watershed characteristics	igital data wer 2 subwatersheds cients developed ods, Flood pred 20. 5	e tested on an Coefficients with conventi	independent set predicted with onal methods.

PREFACE

Objective:

- 1. To determine whether ERTS data can be used to characterize parameters affecting watershed runoff.
- 2. To compare the performance of hydrologic models when routine manually determined parameters are used versus when ERTS derived parameters are used.

Scope:

The study was based on the hydrologic data pertaining to 20 highly instrumented watersheds located in central Oklahoma. Data from one group of 10 watersheds was related to linear combinations of mean digital MSS data to develop a prediction scheme for watershed runoff coefficients. Two storm runoff equations were fitted to the watershed data to arrive at measured coefficients that represented watershed surface conditions. The SCS storm runoff equation was used in this study to illustrate that with dry surface conditions the coefficient commonly called the runoff curve number can be related to ERTS-MSS digital data. Predictions based on the relationship found in two ERTS scenes were tested on the remaining 10 watersheds.

Conclusions:

Predictions were significantly improved over the runoff curve numbers calculated by conventional means, and major improvement in estimates of flow into flood control works is possible. The use of the technique produces objective estimates of watershed runoff that can be repeated. This study was not extensive enough to determine if dense vegetation on watershed surfaces will limit the application of the technique.

Summary of Recommendations:

A follow-on study to test the prediction technique on heavily vegetated watersheds and determine the extent of the regions where the technique can be used.

TABLE OF CONTENTS

																									-			ľ	age
1.0	Intro	odi	ıct	ic	n	•			•	•			•		•				•,	•	•		•		•			•	1
2.0	Appro	oac	:h				•						•	•				•,	•	•		•		•	•			•	8
3.0	Groun	nd	Tr	ut	h	an	đ	Da	ta	1. F	rc	oc€	55	ir	ıg			•	ų.		•		•	•		•	•		11
	3.1 3.2 3.3 3.4 3.5 3.6	Da Cu Cu A	ita irv irv Se	e e e	Com Nu Nu ond	ipi imb imb l R	la en en	eti s s of	or Ca by	1. 10 Eq	ul lon lus	at ive	ent ent	:ic	ona	i	Me	etl	ı Qe	d.	•	•	•	•	•	•	•	•	13
4.0	ERTS	Da	ıta	I	ro	се	5.5	sin	ıg		•	•	•		•		٠		q	•		•	•	•	•		•	•	17
	4.1 4.2 4.3 4.4	Di Da	igi ıta	ta I	ıl Pro	Da ce	ta	ı S sin	sel ng	lec Ap	te pr	ed To a	acl	1.	•	•	•	•	51 m	•	•	•	•	•	•	•	•	•	17 18
5.0	Analy	ysi	s				•	•	÷	•	•						•		Ę	•				•				•	22
	5.1 5.2 5.3 5.4	Cu Pr	rv ed	e ic	Fi ti:	tt. on	ix	ıg of	Ċı	irv	7е	Nı	ıml	ei	rs	fo	r	Te	9 S 1	t 1	Wai	tei	rsl	hec	ls	•	•	•	22 27
6.0	Comme	ent	s	aı	ıd	Со	no	:1u	ısi	ion	ıś						•		٩			•		•					37

LIST OF FIGURES

Figure		Page
1	Display of MSS 5 data for Watershed 512	. 19
2	The relations of MSS data from Scene 1058 to measured watershed runoff curve numbers	. 24
3	The relations of MSS data from Scene 1400 to measured watershed runoff curve numbers	. 25
4	Comparison of conventional SCS curve numbers to curve numbers predicted with 2 bands of ERTS-MSS data (Scene 1058)	28
5	Comparison of conventional SCS curve numbers to curve numbers predicted with 4 bands of ERTS-MSS data (Scene 1058)	29
6	Comparison of conventional SCS curve numbers to curve numbers predicted with 2 bands of ERTS-MSS data (Scene 1400)	30
7	Comparison of conventional SCS curve numbers to curve numbers predicted with 4 bands of ERTS-MSS data (Scene 1400)	31
8	Grey scale printout with map overlay of the Sugar Creek subwatersheds used to test the prediction of runoff curve numbers with ERTS-MSS data	34
9	Comparison of SCS design watershed runoff curve numbers to curve numbers predicted using 2 bands of ERTS-MSS data	35

LIST OF TABLES

Table		Page
1	Antecedent precipitation index for scene dates	12
2	Summary of watershed data	14
3	Data base for prediction curves - Group I	26
4	Measured and predicted runoff coefficients - Group II.	32

LIST OF ABBREVIATIONS AND SYMBOLS

USDA	United States Department of Agriculture
ARS	Agricultural Research Service
SCS	Soil Conservation Service
USGS	United States Geological Survey
MSS	Multispectral Scanner
ERTS	Earth Resources Technology Satellite
API	Antecedent Precipitation Index
CN	Curve Number, a coefficient for the SCS storm runoff
	equation, No. 1.
С	Coefficient for equation No. 2.
P	Weighted storm precipitation
Q	Watershed runoff
S	Storage in surface soils
$\mu_{\mathbf{X}}$	Mean of digital values for band x.

1.0 Introduction

Engineering works for the control of flood waters have been built throughout several centuries, but never at the pace that will be required to protect life and food production capacity for our fast growing world population. Safe and economical design of flood control structures such as dams, diversion dikes, and conveyance channels require reliable estimates of flood flows that can be expected from the watershed areas above the structure. To gain some understanding of water supplies and watershed runoff, many hydrologic measurements; river stages, flow volumes, rainfall and snowfall, and topographic measurements have been accumulated in recent times. The hydrologic measurements available today pertain primarily to large river basins and, in some instances, drainage areas of smaller watersheds in regions that have historically high density populations.

Long periods of record, 30 years or more, are desirable to establish the rainfall-runoff relations that can be expected in both high and low rainfall seasons. Instrumentation and manpower to gather and compile adequate hydrologic records are expensive and time consuming, therefore, watersheds selected for monitoring are usually those where the need for data is most critical. The more developed countries of Europe and North America have never had resources available to accumulate watershed runoff data to meet future needs, while underdeveloped nations have even less data to use in the design of flood control structures.

The United States Geologic Survey (USGS) has been the primary agency responsible for gathering watershed runoff information in this country. Their efforts prior to the last decade were directed toward data collection for large basins where the Department of Interior or the U. S. Army Corps of Engineers would be responsible for designing flood control works. Runoff from tributary watersheds has been recorded by the USGS on only a small percentage of the tributary watersheds as funds would permit.

The United States Department of Agriculture (USDA) on the other hand, has monitored rainfall and runoff from many small drainage areas. The small drainage areas usually consisted of a so-called unit source area having uniform soil and cover. Their interest was in the drainage area rainfall-runoff relations needed to design small detention and control structures for farmers either to control erosion or provide water for livestock. The United States therefore has rather extensive records of runoff from most large river basins and numerous small unit source areas. Runoff records for agricultural watersheds with 1.0 to 500 square kilometers in drainage area are generally not available.

Runoff and flood flows from small agricultural watersheds have, in recent years, become an important concern of the agricultural and small town property owners. The control of floods by construction of numerous small detention structures on branches of a tributary watershed has become an accepted practice. At the same time, runoff from small watersheds has become important as a water supply for municipalities.

Reliable projections of the quantity and rate of runoff from the surface of the land into rivers and streams are difficult to obtain for ungaged watersheds. However, this information is needed in the design of any structure located in the vicinity of a water course; for example, the storage capacity of municipal water supplies and flood detention structures. When projections of runoff are questionable, the storage capacity of such structures is quite often overdesigned. Overdesign not only increases construction costs, but may also lead to significant reduction in the flushing action needed to maintain good water quality in structures where inflow is initially saline and evaporation rates are high.

Examples of overdesign are frequently observed throughout the Great Plains. In the central reach of the Washita
River basin, a water supply reservoir for the city of Chickasha was completed in 1958. The history of runoff into this
structure for the past 15 years shows that the anticipated
runoff exceeded the observed by several times. As a result
of the overdesign and other related problems, the salinity of
the stored water has increased sufficiently to preclude use
as a municipal water supply and even sometimes as an irrigation
source.

In an adjacent watershed, Sugar Creek, a study of the response of a large number of flood detention structures to a large storm on September 19-20, 1965 shows that the inflow was only about one-half that expected.

The quantities and rates of runoff that are used to design structures such as these are estimated from various types of watershed runoff models. These models are mathematical equations, generally of an empirical form, based on the drainage area, topography, soil and cover of the subject watershed. Usually, parameters of these models represent drainage area and surface conditions prevailing at the time of a rainfall The integrated influence of these characteristics combined with measurable climatological parameters (rainfall, antecedent moisture, rainfall intensity, etc.) can produce reasonable estimates of storm runoff. Efforts have been made to quantify the integrated influence of soils, cover and surface roughness. However, at the present time, no objective means exists for estimating this influence. Present methods for estimating this influence are tedious, expensive and subject to judgment of the hydrologist.

The problem of subjectivity associated with present methods that are used to derive coefficients of runoff equations may be circumvented by applying digitized data obtained from ERTS. Even though hydrologic analysis based on photographic data obtained from ERTS suffers from the same subjectivity as do the existing methods, data obtained from the multispectral scanner, MSS, on board the satellite can provide digital data that can be incorporated into mathematical equations. This type data is less subjectively biased than are the other types of data.

The ERTS multispectral data is also superior to aerial digital data collected prior to ERTS because the relatively constant sun angle within an ERTS frame, caused by the satellite's sun synchronous orbit, eliminates many of the problems in comparing the spectral reflectance from watershed surfaces. The ERTS data has additional advantages in that there is sufficient spatial resolution to allow the identification of watersheds as small as 10 hectares, and yet the number of data points depicting a large watershed are reduced to a manageable number.

This study was conducted to investigate the possibility of using ERTS-MSS digital data to define the coefficients for watershed runoff models used on small ungaged watersheds and thus provide economical and timely data for planning and design of flood detention structures.

Estimates of runoff from small watersheds are usually made either by use of a simple empirical runoff model or by use of the modern complex watershed models. The empirical watershed models are widely used by practicing hydrologists. Numerous brief models have been developed in the last century, however, one in particular, developed by the USDA Soil Conservation Service (SCS) is most commonly used in the United States (Mockus, et al., 1971).

The SCS equation:

$$Q = \frac{(P - .2S)^2}{P = .8S}$$
 (1)

where $S = \frac{1000}{CN} - 10$

Q = storm runoff (cm/2.54)

P = weighted storm rainfall (cm/2.54)

S = storage in the watershed surface (cm/2.54)

CN = function of soil, cover, antecedent moisture
 (dimensionless)

All of the many empirical runoff equations represent the influence of near-surface storage by use of one or more coefficients. In this equation, the coefficient, CN, commonly called the curve number is a function of the surface characteristics of the watershed at the time a storm event begins. No attempt is made to describe the dynamic changes in storage through the storm period due to changes in infiltration rate in the soil, depletion of available storage in the vegetation, or depletion of storage in the soil.

The SCS runoff equation was developed from data collected on small plots located in several regions with a variety of soils and cover. Tables were developed from these data to define the influence of soil type, vegetative cover, and antecedent moisture conditions. To apply the equation, each unit of area with a single soil type and single cover must be assigned its own curve number. The areas and curve numbers are tabulated for an entire watershed drainage area and the curve numbers are weighted by area to determine an average curve number for the watershed. Thus, the computation of the watershed curve number is not only dependent on the judgment and experience of the hydrologist, but also is time consuming and subject to computational errors.

The goal of this study has been directed toward development of a technique where the coefficient CN for the SCS runoff equation can be determined objectively from ERTS data.

2.0 Approach:

The problem was approached by first assuming that differences in the soil-cover complex over a watershed area would be detectable by differences in reflectance of visible and/or near infrared light. The reflectance in each band of light available from the digital data of the ERTS multispectral scanner could then be averaged over a watershed drainage area to provide a single value for comparison to measured watershed runoff coefficients.

Twenty watersheds with extensive measurements were selected to represent the widest range of rainfall-runoff response experienced in central Oklahoma. The watersheds were then to be divided into two comparable groups of 10, each group having as near as possible, the same range of sizes and the same range of runoff coefficients. Group I watersheds would then be used to distinguish and develop a relationship between the coefficients of a runoff equation and MSS data. Group II watersheds were set aside for verification.

To accomplish this, storm rainfall, storm runoff, rainfall intensity, and antecedent rainfall would be calculated and compiled for the available period of record on each of the 20 watersheds. These data would provide the basis for evaluating the actual rainfall-runoff response of each watershed and determine the measured curve number (CN) for each watershed. These data would provide the basis for grouping the watersheds and also be sufficient to evaluate other simple empirical runoff equations by fitting the data to the equations and

optimizing the coefficients. Existing computer programs for optimization were available for processing these data.

Processing of the MSS digital data was planned in several steps. First, to elininate the costs of handling large volumes of digital data, 70 mm black and white photographs of MSS-5 data were requested to screen the available supply and limit the study to cloud-free scenes representing all seasons of a year. Secondly, computer programs would be developed to identify, extract, and isolate the digital data that represented each watershed drainage area. A technique would be developed where watershed boundaries could be mapped on an overlay for a display system allowing selection of coordinates for a series of points that would define the boundaries of the location of data on the digital tape. Computer programs could then be written to excerpt the pertinent data, store it in separate files and compute the mean and standard deviation of each band over the surface of the individual watershed.

It was then proposed that the linear combinations of mean spectral response from the four bands would be examined by multivariate analysis techniques and simple curve-fitting techniques to find the best relation between the MSS data and watershed runoff coefficients. Only data from Group I watersheds would be used to develop the relations. If an acceptable relation existed, it was then to be used as a prediction scheme on the Group II watersheds. Both predicted coefficients and coefficients developed by the conventional SCS procedure would

be compared to measured coefficients to determine if the remote sensing technique could determine coefficients as well or better than the conventional method.

3.0 Ground Truth and Data Processing

3.1 Basic Data

Ground truth for this study consisted of recorded hydrologic data collected by the Agricultural Research Service (ARS) from the 1961 through 1972 time period. The 20 watersheds used are located in Grady and Caddo Counties in central Oklahoma. The watersheds generally represent small tributary watersheds of the Southern Great Plains area. Mean annual rainfall in the area is 78 cm.

Two hundred and fifty-six storm events were selected from the records of the 20 watersheds. Storm events were selected on a basis of weighted mean storm rainfall greater than 3 cm. and measured runoff greater than .03 cm. The number of acceptable events ranged from 9 to 21 events per watershed.

3.2 Data Compilation

Data compiled for each storm event used included weighted mean rainfall, runoff, antecedent rainfall index (30-day, decayed), antecedent rainfall index (5-day sum), and maximum hourly intensity. Drainage area above farm ponds varied from 0 to 40 percent of the total drainage area within each watershed. Farm ponds would modify runoff to a different extent on each watershed, therefore runoff was adjusted to an estimate of the contributing area using records of farm pond storage. The 30-day antecedent rainfall index (Linsley, et al., 1949) was computed by depleting the residual rainfall index daily by a seasonally varying constant. The constants used were derived from an inverse mean daily temperature.

Antecedent rainfall index calculated in this manner is usually more realistic than simple summation of prior rainfall over some period of time. An antecedent precipitation index was calculated for the entire study area and values were selected for each day an ERTS scene was taken. Antecedent precipitation index values for the day of each scene used in this study are listed in table 1. Summation of rainfall for the 5-day period prior to each storm was compiled for these storms since the SCS procedure uses this index to account for prior rainfall.

Table 1.	Antecedent	Precipitation	Index	for	Scene	Dates

Scene Number	Date	30-Day API (cm/2.54)
1058	09-19-72	.028
1094	10-25-72	2.27
1184	01-23-73	1.94
1256	04-05-73	1.19
1274	04-23-73	.928
1400	08-27-73	.0180
1508	12-13-73	1.063
		•

3.3 Curve Numbers Calculated

The rainfall and runoff values were used in the SCS runoff equation (Equation 1) to calculate actual curve numbers for each storm event. It is apparent from a study of these events that conversion from one class to another in the SCS routine is not appropriate to storms in this study area unless a large number of storms have occurred in each antecedent condition

class. A large majority of the events were in the Class I category of antecedent precipitation index used by SCS.

Therefore, only Class I storms were used to derive mean curve numbers for watersheds in this study.

3.4 Curve Numbers by Conventional SCS Method

The Soil Conservation Service had previously determined conventional runoff curve numbers for 12 of the watersheds used in this study. These were furnished to ARS along with soils maps and photo mosaics of each watershed for computation of curve numbers for the remaining 8 watersheds by the conventional SCS method. Land use was interpreted from color and color IR photographs taken on the ERTS aircraft support flights. Singular soils - land use classes were identified, assigned a curve number and the area of each class measured. Weighted mean curve numbers were then calculated from these data.

A listing of the curve numbers calculated from measurements and those calculated by conventional SCS techniques can be found in table 2.

3.5 A Second Runoff Equation

Attempts were made to fit another runoff equation to the data using precipitation, 30-day antecedent precipitation, and maximum hourly intensity as variables. Very poor results were obtained after trying several linear combinations of the variables. Ultimately the intensity was deleted and runoff was fitted to rainfall alone, then deviations in predicted runoff from measured runoff were fitted to the 30-day decayed

in Addin Annimitation

Table 2.	Summary of W	atershed Data	A		
Watershed Number	Drainage Area (km²)	Percent DA above Ponds	Measured CN (Eq.1)	Conventional CN (Eq.1)	Constant C (Eq.2)
_		Group	Ī		·
206	.110	0.0	53.6	61	.034
207	.0777	0.0	75.8	86	.122
111	67.3	26.4	60.9	71	.038
141	190.	20.0	58.0	74	.023
512	91.2	3 L . 4	67.2	74	.050
513	49.7	34.4	65.7	74	.054
5141	16.4	28.2	61.5	74	.041
5146	3.08	31.1	63.8	73	.068
522	539.	19.5	57.1	73	.031
612	2.28	20.7	66.7	74	.057
		Group	II	•	
205	.0959	0.0	54.4	61	.039
208	.0749	0.0	77.4	83	.147
121	534.	21.2	58.6	78	.023
311	65.5	40.7	69.6	77	.078
511	154.	34.4	69.4	75	.082
5142	1.39	45.4	59.4	76	.027
5143	1.97	33.7	56.3	68	.021
5144	5.90	38.4	62.8	76	.066
611	19.6	31.3	70.2	77	.065
621	86.2	20.6	67.4	77	.057

^{*}All values other than drainage area are dimensionless.

antecedent precipitation thus leading to the exponential values to relate runoff to precipitation and antecedent precipitation. These exponents were derived using all 256 storm runoff events. The resulting equation was in the following form:

$$Q = C P^{2.15} API^{.278}$$
 (2)

in which Q = watershed storm runoff (cm/2.54)

C = a dimensionless coefficient representing
 differences in watershed conditions

P = weighted mean storm rainfall (cm/2.54)

API = 30-day decayed antecedent rainfall index derived using inverse temperature curves to adjust for seasonal variations (cm/2.54)

The exponents were then fixed in Equation 2 and a mean coefficient ent fitted for each watershed (Table 2). The coefficients and exponents accepted for this simple equation predict runoff that has a multiple correlation with the measured runoff of .7220, whereas the SCS equation using curve numbers accepted for this study produce a multiple correlation of .7112 when compared to the measured runoff. This indicates the two equations used are of comparable quality for predicting storm runoff in this region. Use of only one or two storm parameters cannot be expected to produce better results than this.

3.6 Map Requirements

Maps were obtained for each of the watershed areas. The coordinates of a series of points defining the watershed boundaries and major stream channels were selected on a chart reader to produce a card deck for each watershed. These data

decks were stored on disk files and used as control for a plotter program to produce overlay maps. Overlays were then plotted to match the scale of ERTS data displayed on a television screen or to match a conventional grey scale computer printout. Location of major water bodies in or near the watersheds were also mapped to aid in positioning the boundary overlay.

4.0 ERTS Data Processing

4.1 Data Screening

Microfilm of the ERTS scenes and the data search system available at Goddard Space Flight Center were used for preliminary screening to select relatively cloud-free scenes over the study area. Nine-inch photographs of the data were then used for a second look before bulk digital tapes of the MSS data were ordered.

4.2 Digital Data Selected

Multispectral digital data for the watershed areas were obtained from the ERTS scanner for seven scenes that covered the study area. Each scene represented major changes in soil moisture and vegetative conditions. The first scene, 1058, dated September 19, 1972, shows a dry dormant condition with almost no ground cover. The second scene, 1094, dated October 25, 1972, provides data with essentially the same ground cover, but extremely wet conditions. The third scene, dated January 23, 1973, showed minor growth in winter wheat fields and wet conditions. The scenes, 1256, dated April 5, 1973 and 1274, April 23, 1973, showed substantial ground cover for crops, pastures, and timber. One of the growing season scenes was extremely wet and one moderately dry. The last two scenes, dated August 27, 1973 and December 13, 1973 show extremely heavy vegetative growth on cropland for the fall and winter Table 1 lists the calculated 30-day antecedent precipitation index associated with each scene used. tance in the near infrared, band 7, was relatively high in

the grassland areas on the fall scene, indicating more growing vegetation than on the scene from the previous fall.

4.3 Data Processing Approach

The MSS data from ERTS were obtained in the form of sequential and adjoining tapes that were laced together with the aid of a computer program (MERGE, Appendix) forming a single file for each watershed area. Due to the nature of the problem, it is very important to keep the relative position of the data points correct and to be able to accurately define its location within a watershed. Without this, coordination of ground truth and spectral response would be impossible. Since the methods used to display the MSS digital data present an image enlarged in the cross-track axis, the maps developed as part of the ground truth data were also enlarged in the cross-track axis before they were used to locate watershed boundaries.

Data sets for the larger watersheds were obtained by displaying the entire ERTS frame for the area of interest on a television display. The portion representing the watershed was isolated using the distorted maps and a computer program (OKLAH, Appendix). The computer program represents the watershed boundary by a series of adjacent parallelograms. About 20 parallelograms seem to be enough to adequately define the watershed boundaries (Fig. 1). This program stores the watershed data on a secondary tape in a rectangular file placing zero values in all data points outside the watershed boundary. The ERTS data format is retained on the secondary

Figure 1. Display of MSS 5 data for Watershed 512

ORIGINAL PAGE IS OF POOR QUALITY tape so the data pertaining to the watershed areas can be displayed on the screen for visual verification that the data selected covers the entire watershed drainage area.

Data sets for the small watersheds were more easily obtained by displaying the ERTS data on computer printout and overlaying it with distorted maps. In both procedures, ponds and channels aid significantly in locating specific points that assure proper selection of the watershed boundary points on the MSS data tapes. In some data sets, stream channels are difficult to locate in grassland areas; a study of the ERTS data showed that MSS band 5 resolved the stream channels and ponds sufficiently well to position the overlay. However, during the growing season, (MSS band 4 + MSS band 5)/MSS band 6 enhanced the resolution of the stream channels. Although cumbersome, the system described for small watersheds will work to locate larger watersheds if a display system is not available. Ratioing bands 5 and 7 also helped to enhance some scenes where single bands offer little contrast.

A simple computer program (Mean 4, Appendix) was used to calculate the mean and standard deviation of the digital values for each band from the digital values stored on the secondary tapes. Computations were made for each watershed on all scenes used in the study. These values were considered as the basic set of multispectral scanner data that would be compared to the hydrologic data. A summary of these data from the seven scenes can be found in the Appendix.

The MSS data from scene 1058 was used as a base to determine if all data points were necessary in the computation of

mean values for each watershed. From each of the watersheds represented by more than 5,000 data points, 256 independent samples were selected. By calculating the means, sample size, and standard deviation of each sample, then combining adjacent pairs of samples and repeating the process, the change in the mean and standard deviation with change in sampling frequency was observed. Less than 1 percent change in the mean occurs between any sample greater than approximately 2,500 data points and the sample that includes all data points in the watershed. In an operational system it seems reduced sampling could therefore be used to cut computer costs when studying large watersheds without impairing the quality of the data.

4.4 Aircraft MSS Data

Aircraft tapes from the 24-channel MSS flown in support of this project were converted to an ERTS-type format for display on the Dicomed. The data quality seems to be erratic and unusable for a complete watershed area.

The aircraft MSS data was, however, useful for a data base in an incidental water quality study. Digital values were punched on cards for a few selected areas that contained ponds where water quality samples were collected near the time of the flight. A technique for processing of the data over water bodies was developed where distribution of the digital values in each band was defined and only the values falling within one standard deviation from the mean were used in the analysis.

5.0 Analysis

5.1 Multiple Discriminant Analysis

Since the objective of this study is to see if MSS data can be used to calculate parameters of a runoff equation, several means of relating the two data sets were used. Discriminant analysis, which can be used to study group similarity or difference and relate this to group descriptors, was used to examine the MSS data of the watersheds having extreme differences in observed runoff coefficients. Using a modified multiple discriminant analysis program (Cooley and Lohnes, 1962), good discrimination was observed between these watersheds when MSS bands 4, 5, and 7 were used in the linear discriminant function. The good discrimination was found in the dry dormant scenes, however the same band also produced the best discrimination in other scenes.

Multiple discriminant analyses considering each of the 10 developmental watersheds as an independent group showed very significant group discrimination. However, the discrimination did not appear to be related to the runoff coefficients. There was no multiple discriminant analyses program available that would evaluate two groups of 10 watersheds and maintain the ranking of the dependent variable (in this case, the runoff) within each group.

5.2 Curve Fitting

Alternatively, plots of the mean value for each band vs. the observed runoff coefficient were made. Since it appeared there might be a relationship, all possible combinations of the means were plotted. Two promising relationships were

evident. The mean of MSS band 5 (μ_5) minus the mean of MSS band 4 (μ_4) is reasonably well related to the SCS runoff curve number for the watersheds in Group I. This relationship is most evident in the dry dormant scene 1058. The combination $\mu_5 + \mu_6 - (\mu_4 + 2\mu_7)$ produces a more consistent relationship when all scenes are considered. Both linear combinations of the bands were used to define prediction curves for scene 1058 (Fig. 2).

Scene 1058 occurred at a time when the 30-day antecedent precipitation index was extremely low. Data from scene 1400 acquired nearly a year later also represented extremely dry conditions. Live vegetation was more prevalent in scene 1400 than in the prior year, however, the 30-day antecedent rainfall index was .028 and .018 for scenes 1058 and 1400, respectively. Some cloud cover was found on scene 1400 and watersheds 611 and 612 could not be identified. Therefore, data from only nine watersheds in each group are available for analysis of this scene.

Figure 3 illustrates that a similar relation to the one found in scene 1058 can be described by using eight of the nine data points. The one data point that plots as an outlier belongs to watershed 111. The shift in this point is likely due to the influence of cloud cover, therefore it was not considered when locating the curves. A summary of the data used to plot the prediction curves is presented in table 3.

Figure 2. The relations of MSS data from Scene 1058 to measured watershed runoff curve numbers.

Figure 3. The relations of MSS data from Scene 1400 to measured watershed runoff curve numbers.

2	
6	

Table 3. Data Bas	e for Pr	ediction	Curves	- Group	I					
Watershed No.	205	207	111	141	512	513	5141	5146	522	612
Scene 1058										
μ5-μ4	.18	5.17	.49	.43	1.66	1.09	.81	.75	11	1.97
$^{\mu}5^{+\mu}6^{-\mu}4^{-2\mu}7$.60	7.18	.74	.18	2.36	1.56	1.34	1.28	.07	2.96
Coefficient 1 (Measured CN)	54.4	75.8	60.9	58.0	67.2	65.7	61.5	63.8	57.1	66.7
Coefficient 2 (Conventional CN)	61	86	71	74	74	74	74	73	73	74
Scene 1400										
μ5-μ4	-5.80	.00	-2.36	-4.68	-3.95	-3.92	-4.72	-4.91	-5.38	
^μ 5 ⁺ μ ₆ -μ ₄ -2μ ₇	-7.62	1.32	-1.98	-5.47	-3.85	-3.75	-4.71	-5.71	-6.16	

5.3 Prediction of Curve Numbers for Test Watersheds

Using data from scene 1058, both relationships illustrated in figure 2 were verified on the Group II watersheds (Figs. 4 and 5). In figure 4, using two bands of MSS data, predictions deviated an average of 4.13 units (absolute) from the measured values. In figure 5 when the predictions were based on using four bands of data, they deviated an average of 3.17 units (absolute) from the measured values.

Curve numbers were then predicted for the Group II watersheds by using the relationships developed from data for scene 1400. The predicted values and the conventional SCS curve numbers were plotted versus the measured curve numbers (Figs. 6 and 7). The average deviation of the predicted values from the measured curve numbers was 4.59 units (absolute) when using two bands of MSS data and 3.70 units (absolute) when using four bands of data. The average deviation of the predicted values can be compared to an average deviation of 10.72 between the conventional and measured values.

The predicted curve numbers for the Group II test watersheds are summarized in table 4. These data were used to plot figures 4, 5, 6 and 7.

Similar plotting techniques were used to examine the relation of the coefficient for equation 2. The results were comparable, however the relationships are not well defined and none seem as promising as the relationships found using equation 1.

Figure 4. Comparison of conventional SCS curve numbers to curve numbers predicted with 2 bands of ERTS-MSS data (Scene 1058)

Figure 5. Comparison of conventional SCS curve numbers to curve numbers predicted with 4 bands of ERTS-MSS data (Scene 1058)

Figure 6. Comparison of conventional SCS curve numbers to curve numbers predicted with 2 bands of ERTS-MSS data (Scene 1400).

Figure 7. Comparison of conventional SCS curve numbers to curve numbers predicted with 4 bands of ERTS-MSS data (Scene 1400).

Ł	
47	١

Table 4.	Measur	ed and	Predict	ed Runo	off Coef	ficient	ts - Gro	oup II			
Watershed	No.	206	208	121	311	511	5142	5143	5144	611	621
Scene 105	8				,						
Predicted (µ5-µ4)	CN	49.6	69.0	62.2	72.9	70.6	62.9	49.0	60.6	64.6	69.6
Predicted $(\mu_5^{+\mu}6^{-\mu}4$		51.6	68.8	58.1	72.8	69.8	63.9	49.1	62.9	65.6	68.5
Scene 140 Predicted (µ5-µ4)	_	56.7	65.8	67.9	71.6	72.8	53.3	58.4	62.9		68.0
Predicted (µ5+µ6-µ4		55.0	67.2	65.1	75.1	71.9	59.8	61.6	62.7	** •*	68.8
Measured	CN	53.6	77.4	58.6	69.6	69.4	59.4	56.3	62.8	70.2	67.4
SCS CN		61.	83.	78.	77.	75.	76.	68.	76.	77:	77.

5.4 Secondary Testing of the Prediction Scheme

In the introduction it was mentioned that runoff into a large number of flood detention structures on Sugar Creek was normally about one-half what was expected when the structures were designed. To further check this prediction scheme, the digital data for the subwatersheds on Sugar Creek watershed No. 121 were examined. Data from scene 1058 was used. A grey scale map of the Sugar Creek area was printed and an overlay was used (Fig. 8) to select data points within each small watershed. The mean difference between values of band 5 and band 4 was calculated for each subwatershed.

Long-term hydrologic data on the subwatersheds was not available. A severe storm had occurred over the area in 1965 where rainfall records from a 3-mile rain gage grid were available and high water marks in the flood detention structures had been collected. The change in storage volume and the weighted rainfall were used calculate the measured runoff curve numbers. Curve numbers based on this type of data are not considered as reliable as curve numbers calculated from long-term records. Using the mean difference calculated for each subwatershed from the MSS data as entry points to the prediction curve in figure 2A, a predicted runoff curve number for each subwatershed was obtained. The conventional SCS curve numbers and predicted values were plotted versus the measured curve number (Fig. 9) to illustrate the improvement possible by using the ERTS, MSS data.

Figure 8. Grey scale printout with map overlay of the Sugar Creek subwatersheds used to test the prediction of runoff curve numbers with ERTS-MSS data.

Figure 9. Comparison of SCS design watershed runoff curve numbers to curve numbers predicted using 2 bands of ERTS-MSS data.

The average absolute deviation of predicted values from the measured runoff curve numbers was 10.18. Average deviations of the conventional curve numbers for the subwatersheds was 24.08. Figure 9 shows that only 3 of the 22 subwatersheds have predicted values slightly under their measured value.

6.0 Comments and Conclusions

At the time this experiment was proposed, several factors important to the outcome were not fully recognized. First, it seemed that the multiple discriminant analysis computer programs could be used to find the ultimate equation that would define the relationship of ERTS-MSS data to watershed runoff coefficients. These programs will identify the variables that obtain best discrimination between members of a group, however, the dependent variable is not confined to a ranking. When more than two sets of watershed data are used, a linear combination of the independent variables may produce the best discrimination, but result in a change in the ranking of the dependent variable. The system, therefore, is excellent as a search routine using the high and low runoff-producing watersheds to indicate feasible linear combinations of the MSS data. In its present form the program does not necessarily indicate the best linear combination for prediction of the dependent variable when several watersheds are considered.

Secondly, it was assumed that an empirical equation including more storm parameters than rainfall amounts would predict storm runoff better than the SCS runoff equation. The data available for the 20 watersheds was not adequate to develop an equation that produced improved results. Equation 2 includes the influence of antecedent precipitation which is not incorporated in the SCS equation, and still does not produce better estimates of storm runoff than the SCS equation.

The quality and number of usable scenes of the ERTS-MSS data was also underestimated prior to the launch. In fact, it now seems that the lack of adequate long-term rainfall and runoff records

on small watersheds may, in some instances, be the limiting factor in making full use of MSS data for watershed runoff estimates. To calibrate the ERTS data and apply the technique developed in this study, records are necessary on several watersheds with a range of runoff producing capability from the lowest to highest runoff curve numbers within each ERTS scene.

The similarity of the curves in figures 3 and 4 indicate that the technique used in this study is repeatable in scenes where dry surface conditions exist. The slope of the curves in these figures also illustrate the fact that the prediction curves based on spectral differences using all four bands of data are more sensitive than curves based on two bands. The digital values in all bands for scene 1400 were very large in comparison to the digital values in scene 1058. The shift of digital values from one scene to another is evident in all seven scenes, but the shift does not seem related to surface moisture conditions.

The good relationship between the linear combinations of digital data occurred only in the dry scenes. Table 1 shows that scenes from the late spring or summer when vegetative growth was heavy were all representative of relatively wet conditions. These data are inadequate to isolate the influence of vegetative growth, thus, heavy vegetation must at present be considered as a possible limiting factor in application of this technique. These data do indicate that wet surface conditions limit the application of the technique during the dormant season. Scenes 1094 and 1184 represent essentially the same sparse vegetative cover that existed in scene 1058, but both winter scenes represent wet surface soils.

The relationships developed with scene 1058 data do not exist in the wet scenes.

When the prediction scheme was tested on the Group II watersheds, both linear combinations of MSS bands predicted runoff curve
numbers better than the conventional calculated curve numbers.
When predictions based on two bands of data (Figs. 4 and 6) are
compared to predictions from all four bands (Figs. 5 and 7), it is
apparent that the four-band system underpredicts less frequently.
Underprediction of curve numbers by more than five units may produce unexpected high flows through the emergency spillway of flood
detention dams that may peopardize the structure. The most desirable
prediction scheme would produce values that would fall on or
immediately above the optimum design line in these figures. To
reduce the risk of underdesign in an operational system, the prediction curve (Figs. 3 and 4) could be shifted to the right until
all data points fall on the left side of the curve.

The testing of the predictions for the 22 subwatersheds of Sugar Creek offers more substantial proof of the validity of the technique. These subwatersheds are all above existing SCS flood detention reservoirs and represent a range of drainage area size common to structures built by SCS under present laws. Figure 9 illustrates that predictions based on ERTS data reduced overestimation of curve numbers by more than a factor of 2.36. Curve numbers underpredicted were 1.2, .45, and 3.0 units below curve numbers determined by the one severe storm. These underpredictions would not be considered serious.

Due to the form of the SCS equation, the influence of the improved curve numbers is nonlinear. If a watershed has an actual

curve number of 50, an overestimation of 20 units will produce a calculated runoff of approximately 7.12 cm from a 15.24 cm rainfall, while an overestimation of 10 will produce calculated runoff of approximately 4.8 cm. The actual runoff would be approximately 2.9 cm. The storage volume would be overestimated 146 percent for 20 units change in curve number and only 68 percent for a change of 10 units. The improvement in prediction of runoff is greater than the linear improvement in the estimation of the curve numbers.

In summary, this study has shown that when dry surface conditions exist, linear combinations of MSS digital data can repeatedly be related to the watershed runoff coefficient used in the SCS storm runoff equation. Predictions based on the relationship between ERTS-MSS data and measured watersheds can improve SCS runoff curve numbers by more than a factor of two over curve numbers calculated by the subjective conventional methods. The improvement in estimating curve numbers can significantly improve estimates of runoff necessary for the design of flood control structures. The technique developed in this study may be limited by reflectance from dense vegetation and should be tested to define the influence of dense vegetation on the results.

REFERENCES

- Chow, V. T., et al. 1964. <u>Handbook of Applied Hydrology</u>. McGraw-Hill Book Co., Inc., New York. Section 21, Hydrology of agricultural lands, pp. 21-1 to 21-95 by H. O. Ogrosky and V. Mockus.
- Cooley, W. W. and P. R. Lohnes. 1962. Multivariate procedures for the behavioral sciences, pp. 1-211. John Wiley, New York.
- Linsley, R. K., Jr., M. A. Kohler and J. L. H. Paulhus. 1949.

 Applied Hydrology. McGraw-Hill Book Company, Inc., New York.
- Mockus, V. 1971. National Engineering Handbook, Section 4,
 Hydrology. U. S. Government Printing Office, Washington, D. C.,
 pp. 7.1-10.23.

APPENDIX

SUMMARY OF ERTS-MSS MEANS, STANDARD DEVIATION, RUNOFF COEFFICIENTS ERTS ORBIT NUMBER 1058 ON 9 19 72

					GROUF	P 1					
WS	MSS-4	MS.5-5	M\$\$-6	MSS-7	SD-4	SD-5	SD-6	SD-7	COEF1	COEF2	COEF3
205	31.00	31.18	36.36	17.97	1.64	2.21	2.21	0.77	54 • 4	61.	0.039
207	32:09	37.26	39.83	18.91	1.78	3 • 45	2.53	1.00	75 • 8	86.	0.122
111	31.39	31.88	39.73	19.74	4.38	7.89	6.30	3.15	60.9	71.	0.038
141	28 • 85	29 • 28	37.81	19.03	3.36	7.34	1.01	3.34	58.0	74•	0.023
512	29.72	31.38	36.08	17.69	2.45	5.38	4.01	1.88	67 • 2	74.	0.050
513	29.16	30 • 25	35.57	17.55	2.36	5.14	3.66	1.66	65.7	74.	0.054
5141	29.43	30.24	34.71	17.09	2.09	4.12	3.00	1.29	61.5	74•	0.041
5146	29.41	30.16	35.07	17.27	2.20	4.00	2.67	1.11	63.8	73.	0.068
522	30.39	30.28	37.04	18.43	4.80	7.39	4.99	2.32	57.1	73.	0.031
612	30.74	32.71	38.71	18.86	2.39	4.77	4.76	2.68	66.7	74.	0.057
					GROUP	1 I					
ws	MSS-4	MSS-5	M\$\$-6	MSS-7	5D-4	SD-5	SD-6	SD-1	COEF1	COEF2	COEF3
206	30.63	30.19	36.19	18.06	1.41	2.04	1.94	0.62	53.6	61.	0.034
208	30.08	32.38	35.81	17.42	2.08	3.14	2.79	1.10	77:4	83.	0.147
121	30.44	31.08	41.04	20.64	8.37	11.21	10.38	5 • 46	58•6	78•	0.023
311	32.49	36.32	38.66	18.57	2.90	5.31	4.57	2 • 23	69•6	77.	0.078
511	30.72	33.61	38.52	18.82	2.82	6.02	4.64	2 • 16	69 = 4	75•	0.082
5142	29.14	29.92	34.80	17.14	1.77	4.20	3.27	1.22	59•4	76•	0.027
5143	28 • 86	28.30	32.88	16.51	1.65	2 • 82	2 • 27	1.10	56•3	68•	0.021
5144	29.57	30.28	34.80	17.12	2 • 22	4.03	2 • 8 9	1 • 24	62.8	76.	0.066
611	32.32	33.40	38.65	18.87	3.50	5•42	5.02	2.70	70.2	77.	0.065
621	29.72	32.28	38 • 40	18.93	2.68	6 • 39	5.03	2 • 33	67 • 4	77•	0.057
		14476060	- D . NO 1140	C D							

WS ---- WATERSHED NUMBER

COEF1 -- SCS CURVE NUMBER CALCULATED FROM MEASURED RAINFALL AND RUNOFF

COEF2 -- SCS CURVE NUMBER DERIVED BY CONVENTIONAL SCS TECHNIQUE

SUMMARY OF ERTS-MSS MEANS+STANDARD DEVIATION+RUNOFF COEFFICIENTS ERTS ORBIT NUMBER 1094 ON 10 25 72

					GROUP	1		•			
WS	MSS-4	MSS-5	MSS-6	MSS-7	SD-4	SD-5	SD-6	SD-7	COEF1	COEF2	COEF3
205	29.96	29.13	30.83	15.30	1.52	1 • 84	1.53	0.88	54•4	61.	0.039
207	28.07	29.07	29.20	14.20	0.88	2 • 40	1.66	1.01	75•8	86.	0.122
111	27.72	26.23	30.13	15.00	2.65	4.92	4.19	2.17	60.9	71.	0.038
141	26.75	25.56	29.28	14.76	2 • 49	4.62	4.15	2 • 46	58•0	74.	0.023
512	26 •65	25 • 45	27.35	13.42	1.62	3.00	2.61	1.43	67•2	74 .	0.050
513	26.45	25.07	27.18	13.37	1.62	2 • 94	2.52	1.40	65•7	74•	0.054
5141	26 • 65	25.15	26.82	13.15	1.48	2.38	2.04	1.12	61.5	74•	0.041
5146	26.38	24.71	26.74	13.16	1.49	2.32	1.91	1.05	63.8	73.	0.068
522	26.93	24.90	27.15	13.32	2 • 42	3 • 63	3.82	2.17	57-1	73•	0.031
612	26 • 88	25.11	27.62	13.78	1.76	3.01	1.94	1.07	66.7	74.	0.057
					GROUP						
WS	M5 S- 4	MSS-5	MSS-6	MSS-7	SD-4	SD-5	SD-6	SD··7	COEF1	COEF2	COEF3
206	28.45	26.90	29.07	14.66	1.09	1.61	1.93	0.77	53.6	61.	0.034
208	26.83	26.03	27.67	13.43	1.44	1.79	1.97	1.10	77.4	83.	0.147
121	26 • 84	26.21	30.08	15 • 14	2.77	5.58	4.67	2 • 48	58•6	78•	0.023
311	27.20	26•43	27.10	13.19	2.11	3.28	3.99	2.23	69•6	77.	0.078
511	27.12	26.57	28.36	13.91	1.80	3.15	2.94	1.57	69 • 4	75•	0.082
5142	26.88	25.90	27.34	13.41	1.33	2.54	2.30	1.11	59•4	76•	0.027
5143	2 6 •68	24.88	26.20	12.95	1.39	1.98	1.75	0.98	56.3	68.	0.021
5144	26.58	25.00	26.81	13.14	1.52	2.39	1.97	1.10	62.8	76.	0.056
611	26.47	24.42	27.32	13.51	1.47	2 • 68	2 • 42	1.40	70.2	77•	0.065
621	26.17	25.26	27.91	13.82	1.65	3.45	2.88	1.54	67•4	77.	0.057

WS ---- WATERSHED NUMBER

COEF1 -- SCS CURVE NUMBER CALCULATED FROM MEASURED RAINFALL AND RUNOFF

COEF2 -- SCS CURVE NUMBER DERIVED BY CONVENTIONAL SCS TECHNIQUE

SUMMARY OF ERTS-MSS MEANS, STANDARD DEVIATION, RUNOFF COEFFICIENTS ERTS ORBIT NUMBER 1184 ON 1 23 73

					GROUP	I					
WS	MSS-4	MSS-5	MSS=6	MS5-7	SD-4	SD-5	SD-6	SD=7	COEF1	COEF2	COEF3
205	20.50	20.96	22.62	11.88	1:14	1.04	1.92	1.28	54•4	61.	0.039
207	19.52	21.10	21.81	11.52	0.68	1.58	1.25	0.93	75•8	86.	0.122
111	21.06	21.04	22.77	11.83	2.23	5 • 66	3.99	2.16	60.9	71.	0.038
141	19.88	19.75	21.55	11.42	2 09	4.05	4.39	2 • 48	58.0	74.	0.023
512	19.62	19.14	20.63	10.77	1010	2:12	2.93	1.81	67.2	74.	0.050
513	19.58	19.08	20.52	10.74	$1 \cdot 11$	2.13	3.02	1.89	65.7	74.	0.054
5141	19.64	19.00	20.02	10.41	1.08	1.83	2.13	1.33	61.5	740	0.041
5146	19057	18.83	19.77	10.35	1.10	2.00	2 • 21	1.38	63.8	73.	0.063
522	20.66	20.15	22.43	11.84	2.39	3.92	4024	2.30	57.1	730	0.031
612	19069	19:45	21.19	11.25	1.17	2.52	3021	1.86	6607	74 e	0.057
					GROUP	11					
WS	MSS-4	M\$\$-5	MSS-6	MSS⇔7	SD-4	SD-5	SD≃6	SD-7	COEF1	COEF2	COEF3
206	20041	20.48	22.52	12.07	0 0 8 2	0.91	1.57	1.13	5306	610	0.034
208	19:31	19.00	19.88	10.19	0.93	1 0 3 6	1018	0.98	77.4	83.	0.147
121	19083	19086	21.97	11.54	2033	4071	4047	2.33	58,6	78 e	0.023
311	19.78	19.50	22.01	11.61	1.18	2016	2044	1 0 4 5	6906	77 o	0.078
511	19086	19077	21.85	11045	1033	2.32	2 0 8 4	1.69	69 a 4	75.	0.082
5142	20.71	20 0 65	22.37	11.75	1.52	2.27	2.48	1045	59。4	760	0.027
5143	20.10	19.85	20.70	10.76	0.97	35 ه 1	1.97	1.33	56.3	58 s	0.021
5144	19.51	18.71	19.72	10028	1010	1.97	2.18	1.38	62.8	760	0.055
611	19.73	19.20	21012	11.03	1.18	2.19	2.92	1.79	70.2	770	0.065
621	19.58	19.81	21.26	11.09	1018	2.75	3 0 2 0	1.83	67.4	77。	0.057
	_	*		~ 0							

WS ---- WATERSHED NUMBER

COEF1 -- SCS CURVE NUMBER CALCULATED FROM MEASURED RAINFALL AND RUNOFF

COEF2 == SCS CURVE NUMBER DERIVED BY CONVENTIONAL SCS TECHNIQUE

SUMMARY OF ERTS-MSS MEANS STANDARD DEVIATION RUNOFF COEFFICIENTS ERTS ORBIT NUMBER 1256 ON 4 5 73

					GROUP	I					
WS	MSS-4	MSS=5	MSS=6	MSS-7	SD=4	SD≃5	SD-6	SD-7	COEFI	COEF2	COEF3
205	30.81	30.78	41.30	22.81	1.04	2.10	2.71	1.44	5404	61.	0.039
207	34038	43.43	49.81	26.29	2040	5 . 26	3.17	1.79	75 . 8	86.	0.122
111	33.18	34041	45 . 85	25.06	4027	8.56	7.51	4 0 5 5	60.9	71.	0.038
141	31.34	34.02	42.46	22.90	3 • 62	8.02	8.57	4.90	58.0	740	0.023
512	30.21	31.03	38.54	20.68	1.89	4056	7.05	4.69	6702	74 0	0.050
513	30 s 18	30.98	37.06	19.72	1.77	3.93	5.98	3.90	65.7	74.	0.054
5141	30018	30 072	35.53	18.82	1042	2.73	4010	2 0 48	61.5	740	0.041
5146	30.16	30.83	35.61	18.92	1.55	2.70	4011	2 0 5 6	63.8	73 0	0.068
522	32.65	32.71	43.59	23.89	7.58	7.65	7036	4.31	57.1	73 a	0.031
612	30.50	31。29	42.20	22097	1.73	4.23	6.05	3 . 95	66.7	740	0.057
					GROUP	ΙI					
WS	MSS-4	MSS-5	MSS-6	MSS=7	SD-4	SD-5	5D-6	SD-7	COEF1	COEF2	COEF3
206	30 0 84	31.06	39.81	21084	1 0 10	3.09	2.15	1.32	53.6	610	0.034
208	30 o 22	33.22	39.19	20.63	1019	3043	4028	2066	7704	830	0.147
121	32.55	36 • 40	45.71	24048	4053	9.96	9.31	5.10	58.6	78.	0.023
311	31.06	31022	47040	26.36	3 0 3 5	7.77	6.05	4028	6906	770	0.078
511	30.62	31.39	43.59	23076	2093	6.98	6 a 9 2	4.67	69.4	. 75 a	0.082
5142	30.27	30.01	34052	18.31	1.33	2046	3088	2.62	5904	76 o	0.027
5143	30.45	30.63	34088	18036	1016	2030	3 0 4 5	2 0 1 5	5603	680	0.021
5144	30.05	30064	35.61	18.87	1046	2080	4022	2061	62.8	76 o	0.065
611	29098	30.43	38.38	20.90	1091	4066	5 o 9 9	4.07	70.2	77.	0،065
621	30084	33094	41010	21074	2015	5087	5090	4009	6704	770	0.057

WS ---- WATERSHED NUMBER

COEFI - SCS CURVE NUMBER CALCULATED FROM MEASURED RAINFALL AND RUNOFF

COEF2 -- SCS CURVE NUMBER DERIVED BY CONVENTIONAL SCS TECHNIQUE

SUMMARY OF ERTS-MSS MEANS STANDARD DEVIATION RUNOFF COEFFICIENTS ERTS ORBIT NUMBER 1274 ON 4 23 73

					GROUP	· 1					
WS	MSS-4	MSS-5	MSS-6	MS5-7	5D-4	SD-5	SD-6	SD-7	COEF1	COEF2	COEF3
205	31.41	27.83	43.28	23.14	0.78	1.87	1.87	1.30	54.4	61.	0.039
207	31.67	34.44	43.78	21.72	0.97	3.40	2.16	1.32	75.8	86.	0.122
111	33 • 42	31.90	47.52	25.13	3.58	7.82	6.53	4 • 28	60.9	71.	0.038
141	33.35	34.25	47.04	24057	6.37	8.84	7.95	4.71	58+0	74.	0.023
512	30.92	28.68	40.10	20.82	4 . 24	3.71	5.97	4.24	67.2	74.	0.050
513	31.02	29.02	38.80	19.98	4.30	3.40	5.15	3.57	65.7	74.	0.054
5141	31.39	29.10	37.54	19:22	5.07	2.35	3 • 46	2.23	61.5	74.	0.041
5146	32.46	29.04	38.13	19:68	8.62	2 0 2 5	3 . 55	2.23	63.8	73 ₀	0.068
522	31.99	28.23	44.42	23.58	6.41	5.78	5 • 42	3.78	57.1	73 e	0.031
612	30。29	27071	43.57	23.06	1.63	4.12	5.00	3.76	6607	740	0.057
					GROUF) II					
WS	MSS=4	MSS-5	M\$\$=6	MS\$-7	SD-4	SD-5	SD-6	5D≃1	COEF1	COEF2	COEF3
206	31.48	28.00	42.48	22.91	0.91	1.37	1.87	1.38	53.6	61 s	0.034
208	31.26	30.84	39. 05	19.89	0.73	3.02	3 • 3 6	2021	7704	83.	0.147
121	34096	37.86	50.41	26.08	7.45	11.04	9.07	5 0 4 1	58.6	78.	0.023
311	31086	28,19	49.83	27•39	7.69	7:61	6.34	4093	69 0 6	77 a	0.078
511	30.63	27.40	43.66	23 • 26	5 ₈ 84	5 0 2 1	6.19	4073	6904	75。	0.082
5142	31.11	28.90	36.51	18.51	1.09	2.71	3.10	2.01	5904	76.	0.027
5143	31 ₀ 16	29.31	36.54	18049	1.10	2.11	3.01	1.92	56.3	68。	0.021
5144	32.30	29,22	37.60	19026	8.59	2039	3043	2020	6208	760	0.066
611	30°01	27.08	40 e 28	21.02	1.62	3.96	5∘63	3099	70 0 2	770	0.065
621	30066	30.36	41013	21.00	l o 56	4040	5 o 3 <u>1</u>	3052	6704	77 ₀	0.057
1.70		114 9 PO CU	CO ALLINAD								

WS --- WATERSHED NUMBER

COEF1 -- SCS CURVE NUMBER CALCULATED FROM MEASURED RAINFALL AND RUNOFF

COEF2 -- SCS CURVE NUMBER DERIVED BY CONVENTIONAL SCS TECHNIQUE

SUMMARY OF ERTS-MSS MEANS.STANDARD DEVIATION.RUNOFF COEFFICIENTS ERTS ORBIT NUMBER 1400 ON 8 27 73 GROUP I

					GROUP	I					
WS	MSS-4	MS 5-5	MSS-6	MSS-7	SD-4	SD-5	5D-6	SD-7	COEF1	COEF2	COEF3
205	37.40	31.60	46.30	24.06	0.77	2.80	1.39	0.78	54.4	61.	0.039
207	38.74	38.74	50.58	24.63	1.19	3.63	2.32	0.76	75•8	86.	0.122
111	39056	37.20	48.52	24.07	2.08	5.93	4.41	2.86	60.9	71.	0.038
141	37.09	32.41	47.61	24 • 20	2.08	5.48	4 0 8 1	3.01	58.0	74.	0.023
512	37.10	33.15	45.82	22.86	1.62	6.60	3.28	2.07	67 * 2	740	0.050
513	36.92	33.00	45.27	22.55	1.34	6.53	2.85	1.75	65.7	74.	0.054
~5141 .	37.16	32 • 44	45.23	22.61	1 • 41	6.68	2.26	1.34	61.5	74.	0.041
5146	37.02	32.11	45.54	23.16	1.86	9.22	2.23	1.32	63•8	73.	0.068
522	38.61	33.23	49.84	25.31	1 e 35	7.10	3.67	2.57	57.1	73.	0.031
612	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	66.7	74*	0.057
					GROUP	ΙΙ					
W.S	MSS-4	MSS-5	MS5-6	MSS-7	SD-4	SD-5	5D-6	SD =7	COEF1	COEF2	COEF3
206	37.21	31.75	46.64	24011	1 0 1 3	2.05	1.66	0.88	53•6	61.	0.034
208	37.09	33.04	46.64	22.95	0.92	1.59	1.62	1.17	77.4	83.	0-147
121	37.69	34.29	49.71	25.30	2.57	5.88	7.22	4.83	58•6	78.	0.023
311	40.08	39.44	46.80	22.69	2.24	7.00	3.95	2.67	6° • 6	77.	0.078
511	37.93	36.34	47.06	23.30	1.64	7.40	4.03	2 • 68	59.4	75.	0.082
5142	37.10	31.32	44.64	22.34	1.50	2 = 60	2.14	1.14	59 4	76.	0.027
5143	36.94	31.64	44.40	22.22	1.18	2.95	2 a 1 0	1.25	56.3	686	0.021
5144	37.01	32.36	45,38	22.86	1055	9.11	2:19	1 4 3 3	62.8	76.	0.066
611	0.00	0.00	0.00	0.00	0.00	0000	0.00	0.00	70.2	7 7 o	0.065
621	38.39	35.01	46.13	22.73	2 0 17	6.90	4027	2.64	6704	77.	0.057
			_	_							

WS --- WATERSHED NUMBER

COEF1 -- SCS CURVE NUMBER CALCULATED FROM MEASURED RAINFALL AND RUNOFF

COEF2 -- SCS CURVE NUMBER DERIVED BY CONVENTIONAL SCS TECHNIQUE

ORIGINAL PAGE SUALEM OF POOR SUALEM

SUMMARY OF ERTS-MSS MEANS, STANDARD DEVIATION, RUNOFF COEFFICIENTS ERTS ORBIT NUMBER 1508 ON 12 13 73

					GROUP	I					
ws.	MS S ⊶4	MSS-5	MSS-6	MSS-7	SD-4	SD=5	SD-6	SD-7	COEF1	COEF2	COEF3
205	19.15	20.31	23.15	11.69	1.01	1.81	2.17	0.88	54.4	61.	0.039
207	19.86	22.36	24.82	12.41	0.99	2.15	2010	1.30	75 • 8	86.	0.122
111	19.20	18086	22.94	11.86	2.07	3.75	5012	2.95	60.9	71 .	0.038
141	18.22	17.41	20:34	10.46	1.84	3.56	4.99	2 . 88	58.0	74 .	0.023
512	17.76	17.30	19.88	10.20	1.32	2 0 6 4	4 . 29	2.46	67.2	74 .	0.050
513	17.65	17.08	19.37	9 • 92	1.22	2 • 44	4.02	2.32	65.7	74.	0.054
5141	17.62	17.11	18.80	9 • 64	1.15	2.33	2.78	1.49	61.5	74.	0.041
5146	17.25	16.38	17.075	9.13	1.05	1.99	2.64	1.43	63.8	73.	0.068
522	18.85	18.37	21.64	11.17	2.06	3.70	5.06	2.80	57.1	73.	0.031
612	17.85	17.24	19.81	10.21	1.33	2.50	3.79	2.09	66.7	74.	0.057
					GROUP	ĪΙ					
WS	MS5-4	MSS-5	MSS-6	MSS-7	SD=4	SD-5	SD ~6	SD -7	COEF1	COEF2	COEF3
206	18.78	19.04	21.86	11.21	0.74	1.82	1.56	0.88	53.6	61.	0.034
208	18:11	19.07	20.89	10.59	1.12	2.28	2 • 42	1.31	77。4	83.	0:147
121	18.49	18.22	21.79	11.17	2.12	4 = 41	5.50	3.05	58.6	78.	0.023
311	18•75	18.23	23.38	12.13	1.35	2.66	4.01	2 • 46	69•6	77•	0.078
511	18.75	18.60	22.91	11.83	1.63	3.27	4.84	2.86	69.4	75•	0.082
5142	17.62	17.42	19.10	10.01	0.97	2.09	2.29	1.30	59.4	76.	0.027
5143	17.81	17.72	19.49	10.08	1.04	2.27	2.61	1.36	56•3	68.	0.021
5144	17.32	16.56	18.02	9 • 22	1.03	2.03	2.59	1.38	62.8	76.	0.066
611	18.01	17.50	19.82	10.20	1 e 40	2.50	4 0 0 8	2.42	70.2	77 .	0.065
621	18 • 24	18:53	20.71	10.48	1.57	3.27	4.29	2.30	67.4	7 7 s	0.057

WS ---- WATERSHED NUMBER

COEF1 -- SCS CURVE NUMBER CALCULATED FROM MEASURED RAINFALL AND RUNOFF

COEF2 -- SCS CURVE NUMBER DERIVED BY CONVENTIONAL SCS TECHNIQUE

MERGE

```
INTEGER RSKIP . TAPID
  DIMENSION IDD(3600) . ID(1800) . IO(1800) . IL(1800)
   DIMENSION ITABL(5), IDSBF(11), IOTBL(3), IM(5), IDENT(13)
   EQUIVALENCE(IDD(1), ID(1)), (IDD(1801), IO(1)), (IM(5), IDD(1))
   DATA IDENT/-1+0+4+5+6+7+ 'ER'+'TS'+'A '/
   DATA ITABL/'E ','UC', BR',5,1/
   READ(2,10)RSKIP, NOEFT, NOELT, NRTCY, TAPID
10 FORMAT(1415)
   CALL DSOR(ITABL(5) . IDSBF(11) . ICOMP)
   IDENT(2)=TAPID
   IM(4)=TAPID
   IM(2) = IDENT(7)
   IM(3) = IDENT(8)
   IOTBL(3)=1
   IOTBL(2)=0
   IDENT(10)=RSKIP
   IDENT(11) = NOEFT
   IDENT(12)=NOELT
   IDENT(13)=NRTCY
   LL=NOEFT+NOELT
   IOTBL(1)=-(LL+LL)
   DO 2 I=1.2
   J=I-1
   DO 2 K=1 +RSKIP
   CALL MGTAP(J.2.10.1800.NO)
   IF(NO)2,200,2
 2 CONTINUE
   DO 20 I=1,NRTCY
  CALL MGTAP(0,2,10,1800,NO)
   IF(NO)3,100,5
 3 NO=1648
 5 NO=NO-28
   M=NO-NOEFT+1
   CALL MOVE(IO+M+NO+ID+1)
```

MERGE CONTINUED

OF POOR QUALITY

```
CALL MGTAP(1,2,1L,1800,NO)
    IF(NO)15 + 100 + 15
 15 M=NOEFT+1
    CALL MOVE(IL+1+NOELT+ID+M)
    CALL WDDSK(I + ID(LL) + IOTBL(3) + IDSBF(11) + ICOMP)
 20 CONTINUE
100 CALL MGTAP(0,6,1L,9,NO)
    CALL MGTAP(1.6.IL.9.NO)
    DO 25 I=1 + RSKIP
    CALL MGTAP(0,2,1L,1800,NO)
    IF(NO)25,200,25
 25 CONTINUE
 27 CALL MGTAP(1,3,IDENT,13,NO)
    IF(NO)27,200,28
 28 CONTINUE
    DO 50 I=1.NRTCY
    CALL MGTAP(0.2.1L.1800.NO)
    IF(NO)29+200+30
 29 NO=1648
 30 NO=NO-28
    CALL RDDsk(I+IDD(LL)+IOTBL(3)+IDsBF(11)+ICOMP)
    K=NOEFT+NO+1
    CALL MOVE(IDD,M,LL,IDD,K)
    CALL MOVE(IL + 1 + NO + IDD + M)
    K=LL+N0+4
    IM(1)=I
 35 CALL MGTAP(1,3,IM ,K,NO)
    IF(NO)35,200,50
 50 CONTINUE
    CALL MGTAP(1,8,IDD,9,NO)
200 CALL MGTAP(0.6.IDD.9.NO)
    CALL MGTAP(1,6,IDD,9,NO)
    CALL EXIT
    END
```

```
IBM 1800 MAGNETIC TAPE I/O ROUTINE
  THE FOLLOWING ROUTINE WILL ALLOW THE USER TO
  READ BINARY TAPES IN FORTRAN OR ASSEMBLER.
  THIS ROUTINE HAS BEEN SUCCESSFULLY USED TO READ *
  TAPES CREATED ON IBM 360'S, DEC 10'S, AND UNIVACH
  1100 SERIES COMPUTERS.
                  AUTHOR --
                               ROBERT J TORLINE
                               USDA-ARS
                               P 0 BOX 267
                               WESLACO. TX 78596
                               512-968-5533 EXT 53
                               COMMON USER NO 3080
  MAJOR REVISION
                    VER 4
                               DATE OF LAST CHANGE
* MINOR REVISION
                    MOD 1
                                  FEB 22, 1974
              MGTAP (IUNIT, IFUNC, ID, MAX, NO)
      ENT
MGTAP DC
               *-*
            1 XR1+1
      STX
           II MGTAP
      LDX
      LD
           I1 1
                          OPERATION CODE
      STO
              MGTAP
      SLA
              12
      OR
           11 0
                          DRIVE NUMBER
      STO
              CONTR
                          CONTROL WORD
      LD
           I1 3
                          VALUE OF RECORD LENGTH OR
      STO
              RL
                          MAX DIMENSION OF I/O ARRAY
      LD
            1 2
                          ADDRS OF END I/O TABLE
```

MGTAP CONTINUED

```
STO
              NAME+1
      S
              RL
                          ADDRS BEGINNING I/O TABLE
      STO
              IOADD
                          ADDRS OF ACTUAL REC LENGTH
      LD
            1 4
                          OR COMPLETION CODE
              RETRN+1
      STO
                          UNSTORAGE PROTECT BEGIN
      STS
           I IOADD • / 40
           I IOADD
                          OF I/O TABLE
      LD
                          AND SAVE CONTENTS
      STO
              SAVE
              RL
      LD
      STO
           I IOADD
            1 5
      MDX
      STX
            1 BACK+1
      LD
              MGTAP
              М3
                          BRANCH ON READ NEG
      BN
              SKIP
              M1
                          BRANCH ON CONTROL POS
              SKIP
      BP
      LD
              RL
                          FLIP ARRAY BEFORE WRITE
      BSI
              FLIP
      LD
              М3
                          NEG FOR WRITE OR READ
              MGTAP
                          POS OR ZERO FOR CONTROL
      510
SKIP
      CALL
              P2401
CONTR DC
              *-*
IOADD DC
              *--
                          STO COMPLETION CODE
RETRN STO
                          IF NOT CORRECT WORD COUNT
              TEST
      BNP
                            TEST. IF READ OR WRITE
              MGTAP
      LD
                          SET UP TO FLIP ARRAY
              XR1
      BNN
              RETRN+1
      LD
              FLIP
FLOP
      BSI
XR1
      LDX
           L1 *-*
      LD
               SAVE
                          RESTORE SAVED WORD
              IOADD
      STO
      BSC
BACK
               *-*
SAVE
               *-*
      DC
```

MGTAP CONTINUED

```
RL
       DC
М3
       DC
               -3
       DC
MI
               -1
FLIP
       DC
               *-+
                           ROUTINE TO FLIP ARRAY
       STX
             2 XR2+1
      STX
             3 XR3+1
      STO
               COUNT+1
      LD
               RL
      SRA
      CMP
               COUNT+1
      MDX
               NAME
      STO
               COUNT+1
                           FOR 360 COMPATABILITY
NAME
      LDX
            L1 *-*
                           DATA ARRAYS MUST BE
      LDX
                           FLIPPED AFTER READS AND
            12 IOADD
COUNT LDX
            L3 *-*
                           BEFORE AND AFTER WRITES.
LOOP
             2 1
      MDX
                           ----- NOTE ----
      LD
             1 0
      XCH
                           - IF AN ERROR OCCURS ON
      LD
             2 0
                            A WRITE COMMAND THE
                           - DATA ARRAY WILL RETURN -
      STO
             1 0
      XCH
                           - TO THE CALLING PROGRAM -
      STO
             2 0
                           - AS IT WAS BEFORE THE
      MDX
             1 -1
      MDX
             3 -1
      MDX
               LOOP
XR2
      LDX
           L2 *-*
XR3
      LDX
           L3 *-*
      BSC
              FLIP
TEST
      LD
              MGTAP
                          ON ERROR TEST FOR WRITE
      S
              М3
                          COMMAND (READ WILL BE A
      BNZ
              XR1
                          -1 OR -2). IF WRITE SET UP
              RL
                          TO FLIP THE ARRAY AND
      LD
      MDX
              FLOP
                          RETURN IT AS BEFORE.
      END
```

P2401

```
ENT
               P2401
P2401 DC
                           CALL P2401
      STX
             1 XR1+1
                           DC
                                /HEX
                                        CONTROL
      LDX
            I1 P2401
                           DC ADDRS
      LD
             1 0
      TTO
               CONTL
      LD
             1 1
                           ACCUM =
                                      + WORD COUNT
                                       EOF
      STO
               ADDRS
      MDX
             1 2
      STX
             1 BACK+1
                                          R/W ERROR
CALL CALL
               MAGT
                           2401
                                          END OF TAPE
      DC
               LIST
      MDX
               *+2
BUSY
      LD
      DC
               /3045
      LD
               LIST
      85C
               BUSY , Z
      LD
               LIST+6
               M1
               ZERO
      ΒZ
               M1
               M1
      BNP
               WAIT
               M1
      82
               EOF
               М1
               WLR
      ΒZ
      EOR
              M1
                           CHANGE SIGN OF ERROR
      MDX
               ZERO+2
WLR
      LD
               LIST+2
      BNN
               ERROR
              ADDRS
      S
              M1
      MDX
               ZERO+2
```

P2401 CONTINUED

```
DRIGINAL PAGE IS
```

```
ERROR LD
                  M1
ZERO+2
        MDX
ZERO
        LD
                   ADDRS
XR1
        LDX
BACK
        BSC
WAIT
        SLA
                   16
        STO
                   $PAUS
CONTL
        LD
        WA IT
        MDX
                   $PAUS,0
        MDX
                  WAIT
        MDX
                   CALL
$PAUS EQU
EOF EQU
                  97
                  ZERO+2
-1
M1
LIST
        DC
DC
                   0
        DC
                   0
        BSS
CONTL DC
ADDRS DC
        END
```

MOVE

```
MOVE MOVE SUBROUTINE ENTRY POINT
      ENT
                    CALL MOVE(JCARD, J, JLAST, KCARD, K)
                    THE WORDS JCARD(J) THROUGH
                    JCARD(JLAST) ARE MOVED TO KCARD
                    STARTING AT KCARD(K).
MOVE
                    ARGUMENT ADDRESS COMES IN HERE
      DC
             1 SAVE1+1 SAVE IR1
      STX
      LDX
            Il MOVE PUT ARGUMENT ADDRESS IN IR1
      LD
                    GET JCARD ADDRESS
             1 0
                    SUBTRACT JLAST VALUE
      S
            I1 2
               LD1+1 PLACE ADDR OF JCARD(JLAST) IN
      STO
                    PICKUP OF MOVE
                    GET JLAST VALUE
      LD
            I1 2
ONE
      S
            I1 1
                    SUBTRACT J VALUE
      BSC
                    CHECK FIELD WIDTH
               +2
      SRA
               16
                    NEGATIVE - MAKE IT ZERO
      STO
              LDX+1 STORE FIELD WIDTH IN LCX
      LD
            1 3
                    GET KCARD ADDRESS
      S
           I1 4
                    SUBTRACT K VALUE
      S
              LDX+1 SUBTRACT FIELD WIDTH
               STO+1 PLACE ADDR OF KCARD(KLAST) IN
      STO
                    STORE OF MOVE
                            ADD ONE TO FIELD WIDTH
              LDX+1:1
                    MAKING IT TRUE
                    MOVE OVER FIVE ARGUMENTS
      MDX
             1 5
      STX
            1 DONE1+1 CREATE RETURN ADDRESS
                    L=WONL
                    KNOW=K+JNOW-J
LDX
                    LOAD IR1 WITH FIELD WIDTH
      LDX
           L] *-*
                    KCARD(KNOW) = JCARD(JNOW)
LD1
                    PICKUP JCARD(JNOW)
      LD
           L1
STO
      STO
           L1 *-*
                    STORE IT IN KCARD (KNOW)
                    SEE IF JNOW IS LESS THAN JLAST.
                    IF YES, JNOW=JNOW+1 AND MOVE
```

MOVE CONTINUED

*				NEXT CHARACTER. IF NO. EXIT
•	MDX	1	-1	DECREMENT THE FIELD WIDTH
	MDX		LD1	NOT DONE - GET NEXT WORD
*				EXIT
SAVE1	LDX	Ll	*-*	DONE - RESTORE IR1
DONE1	BSC	L	*-*	RETURN TO CALLING PROGRAM
	END			

OKLAH

C	***	***
C C C		OKLAH AMMED BY M. GAUTREAUX ESLACO: TEXAS 78596
C * * * * * *	***	*******************************
c c	OKLAH IS AREAS BY	A PROGRAM DESIGNED TO SELECT IRREGULAR SHAPE A SERIES OF TRAPEZOIDS USED TO APPROXIMATE THE AREA
C****	***	***************************************
c c	IIN	- INPUT VECTOR
C C	ISAVE	(DIMENSION MAY VARY DEPENDING ON AREA SIZE)
C C C	IDSPY	DISPLAY UNIT
C C	IQUT	- VECTOR USED TO CONTAIN TWO DATA PTS: CONTAIN IN ONE ERTS WORD
C C	QUAD	- VECTOR (TWO DIMENSIONAL) USED TO HOLD THE ID OF AREA AND OTHER PARAMETERS FOR THE SELECTED AREA
Ċ	ID	- ID VECTOR (512)
000	IPT	- VECTOR CONTAINS THE FOUR PTS. THAT DEFINE THE AREA (ONE TRAPEZOID AREA)
	DENT	- VECTOR USED TO CONVERT ID TO REAL NUMBERS
C	JTAPE	- SECONDARY TAPE ID NUMBER ON TAPE (READ FROM TAPE)
с с	ITAPE	- SECONDARY TAPE ID NUMBER ON TAPE (READ FROM CARD)
	NODAT	AREAS
C	NOSET	- NUMBER OF AREAS TO BE SELECTED ON CURRENT PASS
c c	NRCD	- NUMBER OF RECORD THAT YOU WANT TO START WITH WILL SKIP NRCD-1 RECORDS ON ERTS TAPE USED MAINLY WITH ERTSA - BY R. TORLINE - TO TRANSFER
_		HIGH MATNEY WITH FRISA # MT KA LUKLINE # IU INNNGFEN

```
THE Y STARTING POSITION
        IWORD - NUMBER OF WORDS (ONE WORD = FOUR CONSECUTIVE ERTS
                 WORDS WHERE THE FIRST ERTS WORD WAS FOR CHANNEL ONE)
                 USED WITH ERTSA - BY R. TORLINE - TO TRANSFER
                 THE X STARTING POSITION
        IFLNO - FLIGHT NUMBER OF CURRENT ERTS TAPE
        IH20 -
                 WATERSHED NUMBER
        IDAY -
                 DATE OF PASS BY SAT.
        IMNTH -
        IYEAR -
        IHSTA - BOUNDARY PTS. OF THE LEFT - HAND SIDE OF SELECTED
                 AREA (IHSTA = THE LOWEST X COORD.- 1)
        IHEND - BOUNDARY PT. OF THE RIGHT - HAND SIDE OF SELECTED
                 AREA (IHEND = THE HIGHEST X COORD. +1)
        IX.IY = CORRECTION FACTORS FOR A OVERALL SHIFT

    BLOW-UP FACTOR (FOR DISPLAY PURPOSES)

        IH, IV - STARTING COORD. ON DISPLAY
        ICHAN - CHANNEL (1-4) SEND TO DISPLAY
INTEGER START
     DIMENSION IIN(1800), ISAVE(3000), IDSPY(1000), IOUT(3600)
     DIMENSION QUAD(60:12):ID(10):IPT(8):E(4):PT(8):DENT(10)
     DEFINE FILE 1(200,8,U,KAPPA)
     KAPPA=1
        READS IN JTAPE AND IFLE FROM SECONDARY TAPE
     READ(5) JTAPE + IFILE
     WRITE(3,6)JTAPE, IFILE
   6 FORMAT(2110)
C
     READ(2,767) ITAPE, NODAT, NOSET, NRCD, IWORD
 767 FORMAT(515)
```

```
C
      KKK=0
      MAX=1800
       CHECKS FOR CORRECT SECONDARY TAPE
      IF(JTAPE-ITAPE)600+601+600
  601 CALL W1322(5.2)
      IF(IFILE-1)610,620,620
  620 LFILE=IFILE+1
C
         SKIPS FILES ON SECONDARY TAPE IF NECESSARY
      CALL W1322(5,LFILE)
      NFILE=IFILE
      GO TO 602
  610 NFILE=0
         CONTROLS NUMBER OF PASSES NEEDED BY NODAT
  602 DO 630 IZ=1.NODAT
      CALL W1322(4+2)
C
         READS 2ND PARAMETER CARD - NOSET
      READ(2+768)NOSET
  768 FORMAT(IS)
```

```
ORIGINAL PAGE IS
```

```
CONTROLS NUMBER OF AREAS IN CURRENT PASS BY NOSET
       DO 500 IBIG=1 NOSET
 ¢
       IRECD=0
-- C
          READS 3TH PARAMETER CARD - INFLNO, IH20, IDAY, IMNTH, IYEAR
 C
       READ(2,237) IFLNO, IH20, IDAY, IMNTH, IYEAR
   237 FORMAT(515)
 C
       IIN(1)=IFLNO
       IIN(2)=1H20
       IIN(3) = IDAY
       IIN(4)=IMNTH
       IIN(5)=IYEAR
       DO 238 IA=6.9
   238 IIN(IA) #0
 Ċ
          WRITES 3TH PARAMETER CARD ON 1ST RECORD ON SECONDARY TAPE
          FOR THE NEW FILE
       CALL MGTAP(1,3,11N,9,NO)
       NRCD=NRCD-1
       DO 222 JN=1.NRCD
   222 CALL MGTAP(0,2,11N+MAX,NO)
          READS 4TH PARAMETER CARD -
       READ(2:100) NQUAD: IHSTA: IHEND: IX: IY: M: IH: IV: ICHAN
       WRITE(3:100) NQUAD: IHSTA: IHEND: IX: IY: M: IH: IV: ICHAN
```

```
ORIGINAL PAGE IS
```

```
100 FORMAT(915)
         CONTROLS NUMBER OF TRAPEZOIDS IN AREA BY NQUAD
     DO 200 KK=1.NQUAD
         READS IN NQUAD GROUPS OF FOUR PTS. THAT DETERMINE
         EACH TRAPEZOID THAT WILL COMPRISE THE IRREGULAR SHAPED
         ARE PLUS AN ID NUMBER FOR EACH TRAPEZOID
      READ(2,101)(ID(K),K=1,5),(IPT(I),I=1,8)
      WRITE(3,101)(ID(K),K#1,5),(IPT(I),I=1,8)
  101 FORMAT(512,815)
C
         SHIFTING OF COORD.'S DONE HERE IF NECESSARY
C
      IHSTA=IHSTA+IX
      IHEND=IHEND+IX
      DO 10 J=1.8.2
      JK=J+1
      XI+(U)TGI=(U)TGI
   10 IPT(JK)=IPT(JD)+IY
         CHANGING ID NUMBER FROM INTEGER TO REAL
      DO 20 JJ=1.8
      PT(JJ)=FLOAT(IPT(JJ))
   20 CONTINUE
         CHECKS FOR ''O' DEMON.
C
```

```
DESIGNATION BOOK IS
```

```
A=PT(5)-PT(3)
       IF(A)21,25,21
    25 A=A+1
    21 B=PT(1)-PT(7)
       IF(B)23,22,23
    22 B=B+1
          CALCULATES THE Y INTERCEPTS AND SLOPES OF LINES THAT MAKE
          UP THE SIDES OF THE TRAPEZOID
    23 E(1)=(PT(6)-PT(4))/A
       E(2) = -(E(1) * PT(3)) + PT(4)
       E(3) = (PT(2) - PT(8))/B
       E(4) = -(E(3) * PT(1)) + PT(2)
 C
 C
          STORES ABOVE INTO QUAD
       DO 40 KL=6,9
       L=KL-5
    40 QUAD(KK+KL)=E(L)
 STORES ID'S INTO QUAD
       DO 30 KJ=1.5
       DENT(KJ)=FLOAT(ID(KJ))
    30 QUAD(KK+KJ)=DENT(KJ)
. C
 C
          STORES PTS. 2 AND 6 INTO QUAD (PTS. 2 AND 6 ARE USED TO
          COMPLETE THE TRAPEZOID - TOP AND BOTTOM .RESP .-
       QUAD(KK +10) = IPT(2)
       QUAD(KK+11)=IPT(6)
   200 CONTINUE
```

ORIGINAL PAGE IS OR POOR QUALITY

```
MAX=1800
      J=0
         CLEARS DISPLAY UNIT OF ALL COMMANDS
         READYS DISPLAY UNIT FOR START OF INPUT DATA
      CALL EXTIN
      CALL SOI
C
      DO 300 KK=1.NQUAD
         BEGINS BACK THE NEEDED DATA FACTORS FOR EACH TRAPEZOID
         PROGRAM WORKS WITH ONLY ONE TRAPEGOID AT ANY ONE TIME
      IVSTA=IFIX(QUAD(KK+10))
      IVEND=IFIX(QUAD(KK:11))
C
         POSITIONS AREA ON DISPLAY WITH ADJUSTMENTS MADE FOR IH.IV.
         AND BLOW-UP FACTOR
      IHORZ=IH+IHSTA*M
      IVERT#IV+IVSTA*M
      CALL RANDM(IHORZ + IVERT)
        CHECKS POINT INSTA TO SEE IF FIRST PT. IS IN A ODD OR EVEN
         POSITION IN INTERWEAVED ERTS DATA
      I1BIT=ISLA(IHSTA:15)
     NUMB=4*(IHEND-IHSTA+1)
     NB=4*((IHEND-IHSTA+1)/2)
      BNUMB≅NB
```

```
DRIGINAL PAGE IS
DRIGINAL PAGE IS
```

```
KBEGN=1+4*((IHSTA-1)/2)
   11 CALL MGTAP(0,2,1IN,MAX,NO)
      J=J+1
         CHECKS TO SEE IF
                          THE Y COORD . (PT . 2) HAS BEEN REACHED
      IF(J-IVSTA)11,15,15
C
   15 IF(NO)16,125,18
         CONSIDERATION FOR A BAD READ CONDITION ON 1ST TAPE
   16 WRITE(3,104) J
 104 FORMAT('
                BAD RECORD' + 14)
      GO TO 11
         CHECKS CHANNEL 4 FOR STARTING OF GOOD DATA
   18 ICHEK#4
   4 IF(IIN(ICHEK))2:1:1
    1 START=ICHEK
      GO TO 51
    2 ICHEK=ICHEK+4
      IF(ICHEK-1740)4,4,12
   12 WRITE(3.109)
 109 FORMAT( ! ALL NEGATIVE!)
      GO TO 16
         COORNIATES THE X COMPONENT - FOR ERTSA
   51 IF(IWORD)62,62,63
  63 START=1+(IWORD=1)#4
  62 KBEGN=START+4*((IHSTA-1)/2)
```

ORIGINALI PAGE IS OR POOR QUALITY

```
65 N=NO-START-27
      NB=BNUMB
      IF(IHEND-N)72+72+61
   61 WRITE(3,105)
  105 FORMAT( ! IHEND WENT TOO FAR!)
      GO TO 300
         SPLITS ERTS WORD TO GET THE TWO DATA POINTS CONTAINED
         IN ONE ERTS WORD
 72
      CALL HALF(IIN(KBEGN) . IOUT . NB)
      DO 75 I=1.NB
      IF(IOUT(I))73.75.75
   73 I=I+1
      GO TO 77
   75 CONTINUE
      1 = 1
   77 NB=NB=I+1
C
         CHECKS FOR EVEN OR ODD POSITION
      IF(I1BIT)201,201,202
  201 JM=2
      NN=2
      GO TO 83
  202 JM=1
      NN=1
C
   83 ICONT=0
      KL=1
      LJ=4
      Y=FLOAT(J)
         HERE THE JTH LINE (Y) AND ITH POSITION (X) ARE
```

144 ICONT=ICONT+4

```
CHECKED ON A POINT BY POINT BASES IN THE AREA
        DEFINE BY IHSTA , IHEND , PT . 2 , AND PT . 6
        ONLY POINTS LYING IN THE AREA DEFINE BY THE TRAPEGOID
C
        ARE KEPT , OTHER POINTS ARE ZEROED OUT
C
     DO 155 I=IHSTA , IHEND
     X#FLOAT([]
     IF(J-IVEND)19,299,299
   19 IF (J-1VSTA) 41 0 32 0 32
   32 EQ2=QUAD(KK .6) AX+QUAD(KK .7)-Y
     IF (QUAD(KK 06))33034034
   33 IF(EQ2)35035041
   34 IF(EQ2)41.35.35
   35 IF (J-1VEND) 36 041 041
   36 EQ4=QUAD(KK+8)+X+QUAD(KK+9)-Y
     IF (QUAD(KK,8))37,38,38
   37 IF(EQ4)41.39.39
   38 IF(EQ4)39,39,41
C
        SAVE GOOD DATA
   39 DO 165 KI=KL .LJ
        ISAVE(KI)=IOUT(JM)
 165 JM=JM+2
     JM=JM-2
     GO TO 144
C
        ZERO'S OUT UNWANTED DATA
  41 DO 166 KI=KL 0LJ
 166 ISAVE(KI)=0
     3+ML=ML
C
```

```
KL=KL+4
      LJ=LJ+4
      GO TO(175+176) +NN
  175 NN=2
      JM=JM-5
      GO TO 155 -
  176 NN=1
      JM=JM+1
  155 CONTINUE
         WRITES ISAVE VECTOR CONTAINING DATA OF TRAPEQOID ON TO 2ND TAPE
C
      CALL MGTAP(1+3+ISAVE+NUMB+KACNB)
         BLOWING - UP OF ISAVE VECTOR -IDSPY- FOR DIPLAYING
      NM=0
      DO 180 KM=ICHAN NUMB +4
      DO 180 MK=1.M
      NM=NM+1
  180 IDSPY(NM)=ISAVE(KM)
C
         DISPLAYS IDSPY VECTOR
      DO 190 NK=1+M
      CALL DISPY(IDSPY+NM)
  19/ CALL EOL
         CHECKS TO SEE IF REACHED END OF SCREEN
      IF(J-2048)170,170,125
        COUNTS NUMBER OF RECORDS THAT COMPRISE A FILE
```

```
170 IRECD=IRECD+1
      GO TO 11
C
 299 J=J-1
         DUE TO THE FACT THAT THE BASE OF ONE TRAPEGOID IS THE TOP
         OF THE FOLLOWING ONE A BACK-SPACEING OF ONE RECORD IS NEEDED
         BACKSPACING ONE RECORD DONE HERE
      CALL MGTAP(0,7, ISAVE, NUMB, IEOF)
 300 CONTINUE
         END OF FILE MARK COMMAND ON 2ND TAPE
      CALL MGTAP(1,8, ISAVE, NUMB, IEOF)
      NFILE=NFILE+1
         SAVES IMPORTANT FACTS ON TEMP. DISK FILE
      WRITE(1'KAPPA)JTAPE • IRECD • NOSET • ID(1) • ID(2) • ID(3) • IH20
      KKK=KKK+1
 500 CONTINUE
         REWIND COMMAND FOR 1ST TAPE
     CALL MGTAP(0.5.ISAVE.NUMB.IEOF)
```

```
630 CONTINUE
         WRITES FACTS STORED OUT ON TEMP. DISK FILE ON TO PRINTER
  125 KAPPA=1
      IF(KKK-1)131,640,640
  640 CONTINUE
      WRITE(3+877)
  877 FORMAT(1H1)
      DO 622 LL=1.KKK
      READ(1'KAPPA)JTAPE, IRECD, NOSET, ID(1), ID(1), ID(3), IH20
      WRITE (3,603) JTAPE, ID(1), ID(2), ID(3), IH20, NFILE, IRECD
  603 FORMAT(10x, TAPE NUMBER IS', 15, AREA OF ID', 512, IS IN FILE !
     1'NUMBER', 16, WITH', 16, RECORDS')
  622 CONTINUE
         COMMAND TO DISPLAY UNIT THAT ALL DATA HAS BEEN SENT
  131 CALL STOP
         REWIND UNLOAD COMMAND TO 1ST TAPE
      CALL MGTAP (0,6, ISAVE, NUMB, KACNB)
C
      NFILE=NFILE+1
C
      CALL MGTAP(1,5, ISAVE + NUMB + KACNB)
         UPDATES FILE COUNT ON 2ND TAPE
         IFILE CHANGED
      WRITE(5) JTAPE • NFILE
```

W1322

DRIGINAL PAGE IS OF POOR QUALITY

```
ENT
               W1322 (LUN:N)
                            WHERE
W1322 DC
                                 LUN =
      STX
             1 XR1+1
                                       + FILE MARK-1
      LDX
            I1 W1322
                                          1 RETURN
            I1 0
      LD
                                      IF LARGER SKIP
               C4
       S
                                      THAT MANY FILE
      STO
               LUN
                                      MARKS
      LD
            I 1
               1
                                          UNLOAD DRIVE
      MDX
             1
               2
                                       - NUMB OF RECORD
TO SKIP
             1 BACK+1
       STX
      BNP
                STO
                Cl
       S
                            RETURN IF ONLY 1 FILE
               XR1
       ВZ
       STO
               N
STO
       CALL
                FILE
               LUN
       DC
       DC
                N
                *-*
XR1
       LDX
            Ll
      BSC
BACK
       DC
C4
       DC
C1
                1
LUN
       DC
       DC
Ν
       END
```

FILE

FILE	ENT DC STX LDX LD A STO LD	1 11 11	FILE (I,N) *-* WHERE XR1+1 FILE O READ CMND1 O	I= 0 OR 1 (MAG DRIVE) N= + NUMB OF FILE MARKS 0 UNLOAD - NUMB OF RECORDS TO SKIP (ABSOLUTE VALUE)
·	A STO LD	11	UNLOD CMND2	- IF A FILE MARK IS ENCOUNTERED DURING A RECORD SKIP IT IS -
	STO MDX STX BZ BP		FILE 2 BACK+1 UNLD STO	- COUNTED AS A RECORD
STO LDXR1	EOR S STO	L1	MASK MASK LDXR1+1	CONVERT NEG RECORD SKIP TO POS COUNT
CALL	CALL DC DC CALL		P1053 0 LIST P2401	TAKE EAC PRINTER OFFLINE
CMND1			*-* LIST -Z CALL	
	BZ A BZ		MODFY C3 UNLD	EOF INCOUNTERED IF END OF TAPE UNLOAD DRIVE
	LD SKP MDX		FILE CALL	SKIP IF RECORD SKIP

FILE CONTINUED


```
MODFY MDX
             1 -1
CALL
      MDX
UNL
      CALL
               P1053
                           PUT EAC PRINTER
                           ONLINE
      DC
               /0100
      DC
               LIST
XR1
      LDX
BACK
      BSC
UNLD
      CALL
               P2401
CMND2 DC
               *-*
      DC
               LIST
      MDX
               UNL
               /2000
READ
      DC
UNLOD
      DC
               /6000
MASK
      DC
C3
      DC
               3
LIST
      DC
               6
      BSS
      END
```

EXTIN	ENT -		EXTIN	
	CALL		WRITE	SEND
	DC		CODE	
RETRN	BSC	I	EXTIN	RETURN
CODE	DC END		/8000	CODE FOR EXTERNAL INITIAL

WRITE

	ENT		WRITE	ENTER SUBROUTINE
WRITE	DC		* - *	STORES VALUE OF RETRN-1
	STX	1	SAVE1+1	SAVE XR1
	LDX	I 1	WRITE	LOAD ADDRESS OF VALUE
	LD	11	0	TO BE WRITTEN INTO ACCUM.
	MDX	1	ì	MODIFY RETURN ADDR BY 1
•	STX	1	RETRN+1	•
	STO		DATA	AND STORE
BUSY	XIO		DSWO	TEST DO FOR BUSY STATE
	BOD		BUSY	LOOP IF BUSY
	XIO		WRIT	SEND OUTPUT TO DISPLAY
SAVE1	LDX	Ll	* - *	
RETRN	BSC	L	* - *	RETURN
	BSS	Ε	0	
DSWO	DC		0	
	DC		/6701	
WRIT	DC		AREA	
	DC		/65C0	
AREA	DC		/4002	
	DC		126	
DATA	DC		* - *	
_ , , , , ,	END			

ORIGINALI PAGE IS OF POOR QUALITY

SOI

	ENT		SOI		٠		
SOI	DC		*-*				
	CALL		WRITE	SEND			
	DC		START	CODE FOR	START	OF	INPUT
RETRN	BSC:	1	50 I	RETURN			
START	DC		/8001				
	END						

RANDM

	ENT	RANDM	
RANDM	DC	*-*	
	STX	1 SAVE1+1	
	LDX I	1 RANDM	
	LD I	1 0	LOAD HORIZ POSITION IN ACC
	BN	VERTI	IF - CHECK VERT POSITION
	CMP	MAX	TEST HORIZ WITH MAX=2033
	MDX	VERTI	IF GREATER BRANCH TO VERTI
	NOP		IF LESS BRANCH TO HORIZ
HORIZ	SRT	8	SAVE AND
	STO	POSIT+1	STORE 2ND POSITIONING WORD
	SLA	16	ZERO ACCUM.
	SLT	8	RECOVER AND
	STO	POSIT	STORE 1ST POSITIONING WORD
	LD	HOR	SEND THE
	STO	COMND	HORIZONTAL RANDOM COMMAND
BUSY1		DSWO	AND THE FIRST AND JECOND
	BOD	BUSY1	WORD OF THE RANDOM
	XIO	WRIT	POSITIONING FORMAT
VERTI		1 1	LOAD VERTI POSITION IN ACC
	BN	RETRN	AND PREFORM THE SAME TESTS
	CMP	MAX	AS FOR HORIZ, BUT RETURN
	MDX	RETRN	IF VERTI VALUE IS NOT RITE
	NOP	_	•
	SRT	8	·
	STO	POSIT+1	
	SLA	16	•
	SLT	8	•
	STO	POSIT	
	LD	VER	
D11016	STO	COMND	
BUSY2		DSWO	
	BOD	BUSY2	
	OIX	WRIT	

RANDM CONTINUED

```
RETRN MDX
             1 2
      STX
             1 BACK+1
SAVE1 LDX
BACK
      B5C
MAX
      DC
               2047
HOR
      DC
               /8008
VER
      DC
               /8009
           Ε
      BSS
DSWO
      DC
               ٥
      DC
               /6701
WRIT
      DC
              AREA
      DC
               /65C0
AREA
      DC
               /4004
      DC
               126
COMND DC
POSIT DC
      DC
      END
```

STOP

	ENT		STOP
STOP	DC 1		* *
	CALL		WRITE
•	DC		EOL
	BSC	1.	STOP
EOL	DC		/8004
	END		

```
REAL MEAN(4) N(4)
     INTEGER TAPE
     DIMENSION ISAVE(4000)
     DIMENSION SUMX(4), SUMXX(4), SD(4)
     DIMENSION NFILE(32)
     DATA X1+X2/*STAN*+*DARD*/
     MAX=4000
     KONST=3
     IBACK=100
     READ(2:100) TAPE:IDRIV:NPPB:NUFIL
     WRITE(3.100) TAPE + IDRIV + NPPB + NUFIL
     READ(2,100) NFILE
     WRITE(3,100) NFILE
 100 FORMAT(1615)
     READ(IDRIV) JTAPE + IFILE
     WRITE(3,1023) JTAPE, IFILE
1023 FORMAT(1X+215)
     IF(TAPE-JTAPE)90,10,90
  10 IM=IDRIV-4
     DO 40 IN=1 NUFIL
     MI = IN + I
     CALL FLSRH(ISAVE, MAX, NFILE(IN), NFILE(MI), KONST, IDRIV, IBACK)
  11 CALL MGTAP (IM+1+ISAVE+MAX+NO)
     WRITE(3,120) (ISAVE(IB), IB=1,5)
 120 FORMAT(1H1+1X+'SCENE 1274 '+16+'
                                              DOVER
                                                           1 . 16 .
        DATA FOR THE '.16'
                                         ', I3, 2X, 'MONTH OF 19', I2)
                              SITE 3
   3 ICONT=0
     DO 400 I=1.4
     MEAN(I)=0.
     N(I)=0.
     SUMX(I)=0.
     SUMXX(I)=0.
 400 CONTINUE
  26 CALL MGTAP(IM+1+ISAVE+MAX+NO)
```

END

```
IF(NO)90,27,25
25 L=1
   LL=2
   DO 200 J=1,NO,4
   IF(ISAVE(L)+ISAVE(LL))50,13,50
50 JK=J
   DO 12 II=1,4
 6 ICONT=ICONT+1
    N(II)=N(II)+1
    X=FLOAT(ISAVE(JK))
    SUMX(II)=SUMX(II)+X
    SUMXX(II)=SUMXX(II)+X*X
 12 JK=JK+1
13 L=L+4
    LL=LL+4
200 CONTINUE
    GO TO 26
27 CALL MGTAP(IM+7+ISAVE+MAX+NO)
    WRITE(3+701)X1+X2
    WRITE(3,702)
701 FORMAT(/+34X+2A4+6X+'NUM+ OF PTS-')
702 FORMAT(25X, MEAN', 5X, DEVIATION', 5X, CONSIDERED')
    DO 201 IJ=1,4
    MEAN(IJ)=SUMX(IJ)/N(IJ)
    SD(IJ)=SUMXX(IJ)+(SUMX(IJ)*SUMX(IJ))/N(IJ)
    SD(IJ)=SQRT(SD(IJ)/(N(IJ)-1.))
    KN=IJ
    WRITE(3,703)KN, MEAN(KN), SD(KN), N(KN)
201 CONTINUE
703 FORMAT(10X+'CHANNEL'+13+2X+F7+2+3X+F8+3+6X+F9+0)
 40 CONTINUE
    GO TO 80
 90 WRITE(3,106) TAPE
106 FORMAT(10X, WRONG TAPE, SHOULD BE TAPE NUMBER 1,13)
 BO CALL MGTAP(IM+6+ISAVE+MAX+NO)
```

ORIGINAL PAGE IS

FLSRH

```
SUBROUTINE FLSRH(ISAVE, MAX, NFILE, KFILE, KONST, IDRIV, IBACK)
   DIMENSION ISAVE(1)
   IM=IDRIV-4
   CALL MGTAP(IM+7+ISAVE+MAX+NO)
   ICHEK=NFILE-KFILE
   IF(ICHEK-NFILE)8,10,8
 8 IF(ICHEK)1,1,2
   ICHEK=KFILE-NFILE+1
   CALL W1322(IDRIV.ICHEK)
   GO TO 10
 2 IF(ICHEK-KONST)3,3,4
 3 IF(IBACK-NFILE)9,9,4
 9 DO 6 I=1.2
 6 CALL MGTAP(IM+7+ISAVE+MAX+NO)
   CALL MGTAP(IM+2+ISAVE+MAX+NO)
   IF(NO)3.7.3
 7 ICHEK=ICHEK-1
   IF (ICHEK) 10.3.3
 4 CALL MGTAP(IM+5+ISAVE+MAX+NO)
   CALL W1322(IDRIV+2)
   IF(KFILE-1)10,10,5
 5 CALL W1322(IDRIV, KFILE)
10 RETURN
   END
```

DESPY

```
THIS IS A PROGRAM THAT WILL DISPLAY DIGITAL DATA IN SECONDARY FORMAT
  ON THE DICOMED DISPLAY
     INTEGER COR
     DIMENSION IVECT(6000) . IDSAV(700) . ID(26) . IDD(256) . MINMX(2)
     1 * IDSA (700)
     DATA MINMX/! 1,121/
     IMAX=6000
     COR=2
     LINE=3
  NCHAN IS THE CHANNEL THAT IS TO BE DISPLAYED
  MGIN T IS THE DRIVE ON WHICH THE INPUT TAPE IS LOCATED
  NUMCH IS THE NUMBER OF CHANNELS ON THE DATA TAPE TO BE DISPLAYED
  IMAGE WILL RESULT
  IRCD1 IS THE FIRST RECORD TO BE DISPLAYED
  IRCD IS THE NUMBER OF RECORDS TO BE DISPLAYED
  INCRR - INCREMENT RECORDS
  KSMP1 IS THE FIRST PIXEL ON THE SCAN LINE TO BE DISPLAYED
  KSMP IS THE NUMBER OF PIXELS TO BE DISPLAYED
  INCRS - INCREMENT SAMPLES WITHIN RECORDS
 IVAL1 - MINIMUM DIGITAL VALUE EXPECTED
  IVAL2 - MAXIMUM DIGITAL VALUE EXPECTED
  INCRV - INCREMENT OF DIGITAL VALUES
     READ(2:1000)NCHAN:MGIN:NUMCH:IRCD1:IRCD:INCDR:KSMP1:KSMP:INCRS:
    1IVAL1, IVAL2, INCRV
     READ(2,103) ID
 103 FORMAT(26A1)
     DO 5 I=1,256
   5 IDD(I)=MINMX(1)
     DO 3 I=1. IVAL1
   3 IDD(I)=MINMX(1)
     DO 4 I=IVAL2,256
   4 IDD(I)=MINMX(2)
1000 FORMAT(1615)
 INITIALIZE SCREEN
```

ORIGINAL PAGE IS

DESPY CONTINUED

```
PRICE STORY OF THE PAGE IS
```

```
J=0
      K=IVAL1-1
      DO 1 I=IVAL1.IVAL2.INCRV
      J=J+1
      DO 1 L=1+INCRV
      K=K+1
    1 IDD(K)=ID(J)
      DO 2 I=IVAL1, IVAL2, INCRV
      II=I+INCRV=1
    2 WRITE(3:101) I:II:IDD(I)
101 FORMAT(1X,218,2X,A1)
      WRITE(3,102)
  102 FORMAT(1H1)
      CALL MGTAP(MGIN+1+IVECT+IMAX+NO)
C CHECK FOR AN ERROR
      IF(NO)20,20,40
   20 WRITE(LINE + 2000) MGIN + NO
 2000 FORMAT(1X+ BAD READ ON DRIVE '+13+2X+ ERRCODE'+1X+15+//)
      CALL STOP
      CALL RWIND (MGIN)
      CALL EXIT
   40 CONTINUE
      DO 50 I=1 NUMCH
      IA = I + 2
      IF(IVECT(IA)-NCHAN)50,70,50
 PAGE I CONTINUE PROGRAM DESPY
   50 CONTINUE
      WRITE(LINE +2010)
 2010 FORMAT(1X, COULD NOT FIND CHANNEL POSITION AS SPECIFIED ON TAPE &C
     *HECK AND MAKE SURE THAT YOU HAVE RIGHT TAPE-CALL EXIT 1 //)
      CALL EXIT
C THIS IS THE CHANNEL POSITION OF THE PIXEL
   70 IPOSI=1+24
      MM=0
      MMM=1
```

DESPY CONTINUED

```
METERIAL STORY OF
```

END

```
K5MP2=KSMP1+K5MP-1
   85 CALL MGTAP (MGIN+1+IVECT+IMAX+NO)
      IF(NO)20,20.90
 THIS IS IF WE GOT A GOOD READ
C SKIP TAPE RECORDS UNTIL WE GET TO IRCDI
   90 IF(IVECT(1)-IRCD1)85,110,85
  110 IF(IVECT(2))120,130,120
  120 IF(IVECT(2)-1)125,130,125
  125 WRITE(LINE • 2030)
 2030 FORMAT(1X, TAPE RECORDS ARE NOT IN CORRECT ORDER-CALL EXIT! , //)
      CALL EXIT
 -130 ITHIS=IVECT(1)
      IVCTE=IRCD1+IRCD
      MM=MM+1
      IDISE=0
  142 IDISS=IDISE
      CALL SELET(IVECT(IPOSI) . IVECT . NUMCH . NO)
      CALL SPLIT(IVECT+IDSAV(IDISS)+NO)
      IDISE=IDISS+NO=2
  145 CALL MGTAP (MGIN+1+IVECT+IMAX+NO)
      IF(NO)20,20,150
  150 IF(IVECT(1))160.145.160
  160 IF(IVECT(1)-ITHIS)170,142,170
  170 IF(MM-MMM)175 • 180 • 175
  180 MMM=MMM+INCDR
      DO 155 KK=KSMP1+KSMP2+INCRS
      KKK=701-KK
      JJ=IDSAV(KKK)+1
  155 IDSA(KK)=IDD(JJ)
      WRITE(3,100)MM*(IDSA(KK)*KK=KSMP1*KSMP2*INCRS)
  175 IF(IVECT(1)-IVCTE)130,130,260
  100 FORMAT(1X, 15, 2X, 124A1)
 260 CALL SKIP(3,1)
     CALL EXIT
```

SELET

```
**** *** * CALL SELET(ID . IOUT . NV . NCONT)
      ENT
               SELET
      EQU
               54
$WK4
               *-*
SELET DC
               QZSAV
      CALL
               $WK4++4
      MDM
      LDX
            II SELET
      LD
             1 0
      510
               LDXR1+1
      LD
             1 1
               LDXR2+1
      STO
      LD
            11 2
               KMINI
      Μ
      SLT
               16
      STO
               NV1+1
      STO
               NV2+1
      LD
             1 3
      STO
               ADRS+1
            I1 3
      LD
      STO
               LDXR3+1
LDXR1 LDX
            L1 *-*
LDXR2 LDX
            L2 *-*
LDXR3 LDX
            L3 *-*
      LD
               K 0
      STO
               ADRS+1
LOOP LD
             1 0
      STO
             2 0
ADRS
      MDX
NV1
      MDX
            L1 *-*
      MDX
             2 -1
            L3 *-*
      MDX
NV2
               LOOP
      MDX
      CALL
               QZEXT
KMIN1 DC END
               -1
```

```
SUBROUTINE DISCM
```

MULTIPLE GROUP DISCRIMINANT ANALYSIS. A COOLEY-LOHNES PROGRAM. THIS PROGRAM COMPUTES DISCRIMINANT FUNCTIONS, THEIR CANONICAL CORRELATIONS WITH GROUP MEMBERSHIP DUMMY VARIATES, F-RATIOS FOR THESE, AND CENTROIDS OF GROUPS IN THE STANDARDIZED DISCRIMINANT FUNCTIONS SPACE. COEFFICIENTS FOR COMPUTING STANDARDIZED DISCRIMINANT FUNCTIONS SCORES FROM DEVIATION TEST SCORES ARE PUNCHED OUT.

REQUIRED SUBROUTINES ARE DIRNM AND HOW.

INPUT

 $\boldsymbol{\mathsf{C}}$

C

- 1) FIRST TEN CARDS OF DATA DECK CONTAIN A TEXT DESCRIBING THE JOB; WHICH WILL BE REPRODUCED ON THE OUTPUT. DO NOT USE COLUMN 1.2) CONTROL CARD (CARD11)
 - COLS 1-2 M=NUMBER OF VARIABLES
 - COLS 3-5 KG=NUMBER OF GROUPS
 - COLS 6-10 N=NUMBER OF SUBJECTS
 - COLS 11-12 KC=NUMBER OF CONTROL VARIABLES PREVIOUSLY
 - PARTIALED OUT BY COVAR (THIS VALUE WILL BE A
 - ZERO IF INPUT MATRICES COME FROM MANOVA).
 - 3)T MATRIX (TOTAL SAMPLE DEVIATION SSCP * AS PUNCHED BY MANOVA OR COVAR) *
- 4) W MATRIX (POOLED WITHIN-GROUPS DEVIATION SSCP MATRIX. AS PUNCHE D BY MANOVA OR COVAR).
- 5) GROUP MEANS (AS PUNCHED BY MANOVA OR COVAR).
- 6) GRAND MEANS (AS PUNCHED BY MANOVA).

DIMENSION A(20,20), B(20,20), C(20,20), T(20), U(20), V(20),

- * W(20),X(20),Y(20),Z(20),TIT(10,20),D(20,20),E(20,20),IWS(20),
- * ISCN(20) +NV(20)

COMMON M.KG.N.KC.TIT.NTITLE.IWS.ISCN.NV

```
1 WRITE (6,2)
   2 FORMAT(65H1MULTIPLE GROUP DISCRIMINANT ANALYSIS. A COOLEY-LOHNES
    2PROGRAM.
2301 FORMAT(162(10A4))
     DO 3 I = 1.NTITLE
   3 WRITE(6,4)(TIT(I,J),J=1,20)
     WRITE(6,2302)(NV(K),K=1,M)
2302 FORMAT(///1x. FOR THIS ANALYSIS - - THE FOLLOWING DATA WERE USED '
    1//20X, BANDS , 515)
     DO 2303 I=1,KG
2303 WRITE(6.2304) ISCN(I). IWS(I)
2304 FORMAT(1X, 'ERTS SCENE', 15, ' - - WATERSHED', 15)
     WRITE(6,2305)
2305 FORMAT(////)
   4 FORMAT(20A4)
   9 FORMAT (I2+ I3+ I5+ I2)
   5 FORMAT (10X: 5E14:7)
     DO 6 J=1.M
     READ(3,2301) (C(J,K),K=J,M)
   6 CONTINUE
     REWIND 3
     DO 7 J=1.M
     READ(4,2301)(B(J,K),K=J,M)
  .7 CONTINUE
     REWIND 4
     DO 8 J=1.M
     DO 8 K=J.M
     C(K_{\bullet}J)=C(J_{\bullet}K)
   8 B(K+J)=B(J+K)
     DO 15 J=1.M
     DO 15 K=1.M
  15 A(J_{\bullet}K)=C(J_{\bullet}K) = B(J_{\bullet}K)
  A NOW CONTAINS THE A MATRIX (AMONG-GROUPS DEVIATION SSCP MATRIX).
   B CONTAINS THE W MATRIX (WITHIN-GROUPS DEVIATION SSCP MATRIX).
     IF (M-KG) 10 • 11 • 11
```

```
10 MD=M
ORIGINAL' PAGE IS
                GO TO 12
             11 MD=KG-1
          C
             12 CALL DIRNM (A, M, B, D, T, MD)
              ROOTS OF W INVERSE * A ARE IN T AND COLUMN EIGENVECTORS ARE IN D.
          C
                 EM=M
                EKG=KG
                 EN=N
                EKC=KC
                XL=1.0
                TRACE=0.0
                DO 13 J=1+MD
                U(J) = T(J) / (1 \cdot 0 + T(J))
                V(J)=SQRT(U(J))
                W(J)=1.0/(1.0+T(J))
                XL=XL*W(J)
             13 TRACE=TRACE+T(J)
                D2=(EN-1.-EKG*EM)*TRACE
                 DO 14 J=1,MD
             14 Z(J)=100.0*(T(J)/TRACE)
                 IF (M-2) 16,16, 17
             16 IF (KG-3) 18:18: 17
             18 YL=XL
                 F1=2.0
                F2=EN-3.0-EKC
                 GO TO 19
             17 SL=SQRT (((EM*EM)*((EKG-1.0)**2)-4.0)/((EM*EM)+
               2 ((EKG-1.0)**2)-5.0))
                YL=XL**(1.0/SL)
                PL=(EN-1.0+EKC)+((EM+EKG)/2.0)
                QL = -((EM * (EKG-1.0))-2.0)/4.0
                RL=(EM*(EKG-1.0))/2.0
```

F1=2.0*RL

```
F2=(PL*SL)+(2.0*QL)
   19 N1=F1
      N2=F2
      F=((1.0-YL)/YL)*(F2/F1)
      YL=1.0-XL
      WRITE (6,201)XL,YL
  201 FORMAT( OWILKS LAMBDA # 1,F5.4,1
                                          GENERALIZED CORRELATION RATIO.
     CETA SQUARE = 1.F5.4)
      WRITE(6,20) F
   20 FORMAT(45HOF-RATIO FOR H2.OVERALL DISCRIMINATION.=
                                                               F9.21
      WRITE(6,21)
                      N1 • N2
   21 FORMAT(8HONDF1 = 13; 12H AND NDF2 = 16)
      J=MD
      X(J+1)=1.0
   (L)W*(I+L)X=(L)X 22
      J=J-1
      IF(J) 23,23,22
   23 DO 24 J=1.MD
   24 Y(J) = - PL * ALOG(X(J))
      WRITE(6,1002)TRACE,D2
 1002 FORMAT( OTRACE OF W-INVERSE * A= 1.F10.5//, GENERALIZED MAHANANOBIS
     1 D-SQUARE = '.F15.5)
      WRITE(6,25)
   25 FORMAT(48HOCHI-SQUARE TESTS WITH SUCCESSIVE ROOTS REMOVED
      WRITE(6,261)
  261 FORMAT(1H0 + 20X + 22H(ETA)
                                   (ETA SQUARE))
      WRITE(6:26)
   26 FORMAT( OROOTS REMOVED
                                CANONICAL R
                                               R SQUARED
                                                            EIGENVALUE
     1CHI-SQUARE
                    NaDaFa
                               LAMBDA PERCENT TRACE ()
      DO 27 J=1.MD
      JT=J-1
      NDF = (M-JT) * (KG-JT-1 * O)
   27 WRITE(6,28)JT,V(J),U(J),T(J),Y(J), NDF, X(J),Z(J)
   28 FORMAT(6X+14+9X+2(F6+3+8X)+F9+3+5X+F10+0+4X+15+2X+F9+2+F8+2)
C
```

```
DRIGHNAL PAGE 18
```

C

C

```
DO 29 J=1.MD
   DO 29 K=1.M
   A(J.K)=0.0
   DO 29 L=1+M
29 A(J*K)=A(J*K)+D(L*J)*(C(L*K)/(EN-1*0))
   DO 30 J=1.MD
   DO 30 K=1.MD
   B(J.K)=0.0
   DO 30 L=1.M
30 B(J,K)=B(J,K)+A(J,L)+D(L,K)
   DO 31 J=1.M
   DO 31 K=1+MD
31 D(J+K)=D(J+K)*(1.0/SQRT(B(K+K)))
   WRITE(6+32)
   WRITE(7,32)
32 FORMAT(25HOROW COEFFICIENTS VECTORS
   DO 33 J=1.MD
   WRITE(6,49)
                         (D(K+J),
33 WRITE(7+49)
                         (D(K+J) .
                                     K=1 • M }
                  13:2X:5E14.7 / (10X:5E14.7))
49 FORMAT(5H D F
   DO 34 J=1.M
34 Z(J)=SQRT(C(J+J) / (EN-1.0))
   TOTAL SAMPLE STANDARD DEVIATIONS ARE NOW IN Z.
   DO 35 J=1.M
   DO 35 K=1+M
35 C(J*K)=C(J*K) / (EN*Z(J)*Z(K))
   TOTAL SAMPLE CORRELATION MATRIX IS NOW IN C.
   DO 36 J=1.M
   DO 36 K=1+MD
36 B(J,K)=D(J,K)+Z(J)
   DO 37 J=1+M
   DO 37 K=1.MD
   A(J.K)=0.0
   DO 37 L=1+M
37 A(J+K)=A(J+K)+C(J+L)*B(L+K)
```

```
WRITE(6,38)
  38 FORMAT(42H0FACTOR PATTERN FOR DISCRIMINANT FUNCTIONS
     DO 39 J=1.M
  39 WRITE(6,40) J, (A(J,K), K=1,MD)
  40 FORMAT(5HOTEST 14+10(3x+F7.3)/(9x+10(3x+F7.3)))
     DO 41 J=1.M
     0.0=(L)T
     DO 41 K=1.MD
  41 T(J)=T(J)+A(J+K)*A(J+K)
     WRITE(6,42)
  42 FORMAT(19HOCOMMUNALITITES FOR 15:21H DISCRIMINANT FACTORS )
                                    J=1.M}
     WRITE(6,43) (J, T(J),
  43 FORMAT(1H0,10(2X, I3, F7.3))
     DO 44 J=1.MD
     0.0=(L)T
     DO 44 K=1+M
  44 T(J)=T(J)+A(K+J)*A(K+J)
     WRITE(6,45)
  45 FORMAT(53HOPERCENTAGE OF TRACE OF R ACCOUNTED FOR BY EACH ROOT )
     DO 46 J=1.MD
  46 T(J)=100.0*(T(J) / EM)
     WRITE(6,43) (J, T(J), J=1*MD)
C
     KGT=KG+1
     DO 47 J=1.KGT
  47 READ(1,2301)(A(J,K),K=1,M)
     REWIND 1
     READS GROUP MEAN VECTORS AND GRAND MEAN VECTOR INTO COLUMNS OF A.
C
     COLUMN KGT CONTAINS THE GRAND MEANS.
     DO 48 J#1+KG
     DO 51 K=1+MD
     T(K)=0.0
     DO 51 L=1.M
  51 T(K)=T(K)+(A(J+L) - A(KGT+L)) * D(L+K)
     WRITE(6,50) J, MD
```

```
50 FORMAT(20HOCENTROID FOR GROUP 14.4H IN 14.32H DIMENSIONAL DISCRI
    2MINANT SPACE
                   ) -
  48 WRITE(6+43)
                        (K)
                              T(K).
                                     K=1+MD)
     NE=1
     DO 1000 Kl=1,KG
     DO 1001 J=1,M
1001 READ(8,2301)(A(J,K),K=J,M)
     DO 101 J=1•M
     DO 101 K=1.M
 101 A(K_{\bullet}J) = A(J_{\bullet}K)
     DO 104 I1=1,MD
     DO 103 I2=1.M
     E(I1:I2) = 0.0
     DO 102 I3=1,M
 102 E(I1.I2) = E(I1.I2) + (D(I3.I1) + A(I3.I2))
 103 CONTINUE
 104 CONTINUE
     DO 107 I1=1,MD
     DO 106 I2=1.MD
     A(I1+I2)=0.0
     DO 105 I3=1.M
 105 A(I1+I2) #A(I1+I2)+(E(I1+I3)*D(I3+I2))
 106 CONTINUE
 107 CONTINUE
     WRITE(6+2012)K1+IWS(K1)
2012 FORMAT(////1X+ DISPERSION IN REDUCED SPARE FOR GROUP '+12+
    1 WATERSHED (+15)
     DO 2013 Il=1.MD
     WRITE(6,108)(A(I1,I2),I2=1,MD)
 108 FORMAT(10X +8(E14 + 7 + 2X))
2013 CONTINUE
1000 CONTINUE
     REWIND 8
     RETURN
```

END

DIRNM

```
SUBROUTINE DIRNM (A+M+B+X+XL+LVECT)
      SUBROUTINE DIRNM. DIAGONALIZATION OF A REAL NON-SYMMETRIC MATRIX
      OF THE FORM B-INVERSE*A. CODED BY P. R. LOHNES. U. N. H.
      A. M. B. X. AND XL ARE DUMMY NAMES AND MAY BE CHANGED IN THE
      CALLING STATEMENT.
C
      A AND B ARE M BY M INPUT MATRICES. UPON RETURN VECTOR XL CONTAINS
      THE EIGENVALUES OF B-1*A. AND MATRIX X CONTAINS THE EIGENVECTORS
C
      IN ITS COLUMNS. SUBROUTINE HOW PACKAGE IS REQUIRED.
C
      LVECT SPECIFIES THE NUMBER OF EIGENVECTORS TO BE RETURNED.
C
      DIMENSION A(20,20), B(20,20), X(20,20), XL(20), DUM1(20), DUM2(20)
     1.DUM3(20).DUM4(20).E(20)
C
      CALL HOW (M,20,M,B,XL,X,DUM1,DUM2,DUM3,DUM4)
C
      DO 13 1=1.M
      DIAG=SQRT(ABS(XL(I)))
      DO 13 J=1.M
  13 B(J,I)=X(J,I)*DIAG
   16 DO 1 I=1.M
   1 XL(I)=1.0/SQRT(ABS(XL(I)))
      DO 2 I=1.M
      DO 2 J=1 .M
   2 B(I_{\bullet}J)=X(I_{\bullet}J)*XL(J)
      DO 3 1=1.M
     DO 3 J=1.M
    0.0=(LeI)X -
      DO 3 K=1+M
   3 X(I,J)=X(I,J)+B(K,I)*A(K,J)
     DO 4 I=1 M
     DO 4 J=1.M
```

```
A(I,J)=0.0
      DO 4 K=1.M.
    4 A(I,J)=A(I,J)+X(I,K)*B(K,J)
      A NOW CONTAINS BPRIME * A*B OF THE NOTES.
C
C
C
      CALL HOW(M+20+LVECT+A+XL+X+DUM1+DUM2+DUM3+DUM4)
C
      DO 6 J=1.M
      A(I,J)=0.0
      DO 6 K=1.M
    6 A(I,J)=A(I,J)+B(I,K)*X(K,J)
      DO 9 I=1.M
      SUMV=0.0
      DO 7 J=1.M
    7 SUMV=SUMV+(A(J.I)**2)
      DEN=SQRT (SUMV)
      DO 8 J=1.M
    8 X(J,1)=A(J,1) /DEN
    9 CONTINUE
C
C
      COLUMNS OF X(I+J) ARE NOW NORMALIZED.
      RETURN
      END
```

HOW

```
SUBROUTINE HOW(MVAR +MDIM + NVECT + R + E + V + A + B + C + D)
      EIGENVALUES AND EIGENVECTORS OF A SYMMETRIC MATRIX. ALGORITHM
      BY HOUSEHOLDER, ORTEGA, AND WILKINSON. ORIGINAL PROGRAM BY
      DAVID W. MATULA UNDER THE DIRECTION OF WILLIAM MEREDITH. UNIVERSITY
      OF CALIFORNIA, BERKELEY, 1962.
      MODIFIED BY P. R. LOHNES, PROJECT TALENT, 1966.
      M IS THE ORDER OF THE INPUT MATRIX.R.
      MD IS THE DIMENSIONED SIZE OF R IN THE MAIN PROGRAM.
      NV IS THE NUMBER OF EIGENVECTORS TO BE COMPUTED.
       E IS THE VECTOR IN WHICH THE EIGENVALUES ARE RETURNED.
C
       V IS THE MATRIX IN WHICH THE EIGENVECTORS ARE RETURNED.
      THE EIGENVECTORS ARE STORED AS COLUMNS IN V.
C
      A,B,C,AND D ARE WORKSPACE VECTORS.
C
      DIMENSION R(1) + E(1) + V(1) + A(1) + B(1) + C(1) + D(1)
C
      M=MVAR
      MD=MDIM
      NV=NVECT
      IF(M-1)100,97,96
   96 M1=M-1
C
       TRI-DIAGONALIZE THE MATRIX.
      M2=M1+MD+M
      M3 = M2 - MD
      M4=MD+1
      L#O
      DO 1 I=1+M2+M4
      L≖L+1
    1 A(L)=R(I)
      B(1)=0.0
      IF(M-2)13,2,3
    3 KK=0
      DO 15 K=2 M1
```

```
KL=KK+K
   KU=KK+M
   KJ=K+1
   SUM=0.0
   DO 4 J=KL+KU
 4 SUM=SUM+R(J)**2
   S=SQRT(SUM)
   Z=R(KL)
   B(K) = SIGN(S - Z)
   S=1.0/S
   C(K)=SQRT(ABS (Z) * S + 1.0)
   X=SIGN(S / C(K), Z)
   R(KL)=C(K)
   DO 5 I=KJ.M
   JJ=I+KK
   C(I)=X*R(JJ)
 5 R(JJ)=C(I)
   DO 8 J=K .M
   JJ=J+1
   D(J)=0.0
   L=KK+J
   DO 6 1=K.J
   L=L+MD
 6 D(J)=D(J)+R(L)*C(I)
   IF(JJ-M) 7,7,9
 7 DO 8 I=JJ.M
   L=L+1
 8 D(J)=D(J)+R(L)*C(I)
 9 X=0.0
   DO 10 J=K+M
10 X=X+C(J)+D(J)
   X=.50*X
   DO 11 I=K . M
11 D(I) = X * C(I) - D(I)
   LL=KK
```

```
KK=KK+MD
               DO 15 I=K+M
               LL=LL+MD
               DO 15 J=I+M
               L=LL+J
            15 R(L)=R(L)+D(I)*C(J)+D(J)*C(I)
               L=1
               DO 12 I=1+M
               X = A(I)
               A(I)=R(L)
ORIGINAL PAGE IS
OF POOR QUALITY
               R(L)=X
            12 L=L+M4
             2 B(M)=R(M3)
               COMPUTE EIGENVALUES .
         C
            13 BD=ABS(A(1))
               DO 14 I=2 M
               IF (BD-(ABS(A(I))+B(I)**2))130,14,14
           130 BD=ABS(A(I))+B(I)**2
            14 CONTINUE
               BD=BD+1.0
               DO 16 I=1.M
               A(I)=A(I)/BD
               B(I)=B(I)/BD
               D(I)=1.0
            16 E(I)=-1.0
               DO 37 K=1+M
            17 IF (ABS(D(K))-ABS(E(K)))101,101,105
           101 AMAX1= ABS(E(K))
               GO TO 110
           105 AMAX1= ABS(D(K))
           110 IF (AMAX1-1.E-9) 115:120:120
           115 AMAX1 = 1.E-9
           120 CONTINUE
               IF ((D(K)-E(K))/AMAX1-1.E-6) 37,37,18
```

18 X=(D(K)+E(K))*+50

```
IS2=1
  S2=1S2
  C(1)=A(1)=X
   IF(C(1))19+20+20
19 IS1=-1
  S1=IS1
  N = 0
   GO TO 21
20 IS1=1
   S1=IS1
   N=1
21 DO 31 I=2+M
   IF(B(1))22,26,22
22 IF(B(I-1))23+27+23
23 IF(ABS(C(I-1))+ABS(C(I-2))-1.0E-15)24.25.25
24 C(I-1)=C(I-1)*1.0E15
   C(I-2)=C(I-2)*1.0E15
25 C(I) = (A(I)-X)*C(I-1)-B(I)**2 * C(I-2)
   GO TO 28
26 C(1) = \{A(1)-X\} * SIGN (1.0 * S1)
   GO TO 28
27 C(I) = (A(I)-X) + C(I-1) - SIGN (B(I)**2, S2)
28 S2 = S1
  IS2=52
   IF (C(I)) 29, 30, 29
29 S1 = SIGN (S1 \cdot C(I))
   IS1=S1
   IF (IS2+IS1) 30, 31, 30
30 N = N + 1
31 CONTINUE
  N = M - N
IF (N - K) 34, 32, 32
32 DO 33 J = K • N
33 D(J) = X
34 N = N + 1
```

```
IF ( M - N) 17; 35; 35
35 DO 36 J = N. M
  IF (X - E(J)) 17, 17, 36
36 E(J) = X
  GO TO 17
37 CONTINUE
  DO 38 I = 1. M
  A(I) = A(I) * BD
  B(I) = B(I) * BD
38 C(I) = (D(I) + E(I)) * BD * .50
  M1 = M
  K = 1
39 I = 1
40 D0 43 J = 1 M1
   IF (I - J) 41, 43, 41
41 IF (C(I) -C(J))
                  43, 43,
42 I = J
   GO TO 40
43 CONTINUE
  E(K) = C(I)
  K = K + 1
  M1 = M1 - 1
   IF (I - M1 - 1) 44, 46, 46
44 DO 45 M2 = 1 * M1
45 C(M2) = C(M2+1)
46 IF (M1 - 1) 47, 47, 39
47 E(K) = C(1)
   IF (ISIGN (1. NV))
                        79, 76, 76
76 DO 77 I = 1 \cdot M
77 C(I) = E(I)
  J = M
  DO 78 I = 1 M
  E(I) = C(J)
78 J = J - 1
79 CONTINUE
```

```
C
C
      DECIDE WHETHER TO COMPUTE EIGENVECTORS, AND IF SO, HOW MANY
      IF (NV) 48, 99, 48
   48 KX = IABS(NV)
      J = 1
     DO 98 INV = 1.KX
      X = A(1) - E(INV)
      Y = B(2)
      M1 = M - 1
     DO 54 I = 1, M1
     IJ = J + I - 1
     IF (ABS (X) = ABS (B(I+1))) 49, 51, 53
   49 \ C(I) = B(I+1)
     D(I) = A(I+1) - E(INV)
     V(IJ) = B(I+2)
      Z = -X / C(I)
      X = Z * D(I) + Y
      IF (M1 - 1) 50, 54, 50
   50 Y = Z * V(IJ)
      GO TO 54
   51 IF (X) 53. 52. 53
  52 X = 1.0E-10
   53 C(I) = X
      D(I) = Y
     0.0 = (L1)V
     X = A(I+1) + (B(I+1) / X * Y + E(INV))
      Y = B(I+2)
   54 CONTINUE
     MJ = M + J - 1
     IF (X) 56. 60. 56
   56 \text{ V(MJ)} = 1.0 / X
  57 I = M1
     IJ = J + I - 1
```

 $V(IJ) = (1 \cdot 0 - D(I) * V(MJ)) / C(I)$

```
X = V(MJ)**2 + V(IJ)**2
             59, 61,
                        59
59 V(IJ) = (1.0 - (D(I) * V(IJ+1) + V(IJ) * V(IJ+2))) / C(I)
   X = X + V(IJ)**2
   GO TO 58
60 \text{ V(MJ)} = 1.0E10
   GO TO 57
61 \times = SQRT(X)
   DO 62 I = 1 + M
   IJ = J + I - 1
62 \ V(IJ) = V(IJ) / X
   J1 = M1 * MD - MD
   K = M
   GO TO 66
63 K = K - 1
   J1 = J1 - MD
   Y = 0.0
   DO 64
            I = K + M
   IJ = J + I - 1
   L = J1 + I
64 Y = Y + V(IJ) * R(L)
   DO 65
            I = K * M
   IJ = J + I - 1
       J1 + I
65 V(IJ) = V(IJ) - Y * R(L)
66 IF (J1)
              63, 67, 63
67 NPLUS = 0
   NMIN = 0
   DO 70 I = 1 + M
   IJ = J + I - 1
   IF (V(IJ))
                 68,
                      69,
68 \text{ NMIN} = \text{NMIN} + 1
   GO TO 70
```

```
69 NPLUS = NPLUS + 1
70 CONTINUE
                           71, 73,
                                     73
    IF (NPLUS - NMIN)
             I = 1 \cdot M
       = J + I - 1
72 \text{ V(IJ)} = -\text{V(IJ)}
73 CONTINUE
98 J = J + MD
    RESTORE THE INPUT MATRIX.
99 \text{ MD1} = \text{MD} + 1
    JJ = MD1
    M1 = M * MD
             I = 2, M1, MD1
    K = I
                       M1 . MD
    R(K) = R(J)
74 K = K + 1
75 JJ = JJ + MD1
    GO TO 100
97 E(1) = R(1)
    V(1) = 1.0
100 RETURN
    END
```

MANOVA

MULTIVARIATE ANALYSIS OF VARIANCE. A COOLEY-LOHNES ROUTINE. C C THIS PROGRAM COMPUTES MANOVA TESTS OF HI(EQUALITY OF DISPERSION AND H2 (EQUALITY OF CENTROIDS), UNIVARIATE F-RATIOS FOR MEANS, C SELECTED SAMPLE STATISTICS: AND THE W (POOLED WITHIN-GROUP SSCP) C AND TITOTAL SAMPLE SSCP) MATRICES REQUIRED FOR THE DISCRIMINANT ANALYSIS PROGRAM. THESE MATRICES ARE PUNCHED IN UPPER-TRIANGULAR FORM. THE PROGRAM WILL PROCESS UP TO 50 VARIABLES AND ANY NUMBER \subset OF GROUPS. C INPUT C 1) FIRST TEN CARDS OF THE DATA DECK DESCRIBE THE PROBLEM IN A TEXT C WHICH WILL BE REPRODUCED ON THE OUTPUT. DO NOT USE COLUMN 1. C 2) CONTROL CARD(CARD 11) C COLS 1-2 M=NUMBER OF VARIABLES C COLS 3-5 KG=NUMBER OF GROUPS 3) FORMAT CARD (CARD 12) C 4) EACH GROUP OF SCORE CARDS IS PRECEDED BY A CARD GIVING NG=NUMBER OF SUBJECTS IN THE GROUP (COLS 1-5). THUS, SUBJECTS MUST BE SORTED INTO GROUPS AND THE GROUPS COUNTED BEFORE MANOVA CAN BE RUN. PUNCHED OUTPUT IS ALL TO FORMAT(10X+5E14+7 /(10X+5E14+7)) AND IS C 1) GROUP MEANS, FOLLOWED BY GRAND MEANS. 2) T MATRIX(TOTAL SAMPLE DEVIATION SSCP MATRIX) C 3) W MATRIX (POOLED WITHIN-GROUPS DEVIATION SSCP MATRIX) C 4)D INVERSE(INVERSE OF POOLED-SAMPLES DISPERSION ESTIMATE) C Ç SUBROUTINE MATINY IS REQUIRED. C C DIMENSION TIT(10,20),A(20,20),B(20,20),C(20,20),

```
*T(20),U(20),W(20),X(20),D(20,20),NV(20),
    *IWS(20) *ISCN(20) *SDA(4*4) *SM(4) *Y(3)
     COMMON M+KG+N+KC+TIT+NTITLE+IWS+ISCN+NV
     READ(5,1121) IGROUP
1121 FORMAT(12)
     DO 1122 I=1, IGROUP
     READ(5,1101) ISN, ISHD, ITIL, NG
1101 FORMAT(6X,15,T19,15,T31,15,T42,18)
     Y(1)=ISN
     Y(2)=ISHD
     Y(3)=NG
     WRITE(2:102)Y
     DO 1123 J=1.4
     READ(5,1102)(SDA(J,K),K=1,4)
     WRITE(2,102)(SDA(J,K),K=1,4)
1123 CONTINUE
     READ(5:1102)(SM(K):K=1:4)
     WRITE(2,102)(SM(K),K=1,4)
1122 CONTINUE
     REWIND 2
   1 WRITE(6,2)
   2 FORMAT(33H1MANOVA. A COOLEY-LOHNES PROGRAM
     READ(5,1001,END=53)NTITLE
     DO 3 J=1.NTITLE
     READ(5,4)(TIT(J,K),K=1,20)
   3 WRITE(6,4)(TIT(J,K),K=1,20)
   4 FORMAT(20A4)
     READ(5.5) M.KG
   5 FORMAT(12:13)
     READ(5 * 1001)(NV(I) * I = 1 * M)
1001 FORMAT(2513)
     WRITE(6,1003)(NV(I),I=1,M)
```

```
1003 FORMAT( OVARIABLES FOR THIS RUN ARE, 1/.2513/.28x.2513)
  102 FORMAT(162(10A4))
 1102 FORMAT(19X+4E14+7)
      EM=M
      EKG=KG
      EK=KG
      WRITE(6.6) M.KG
    6 FORMAT(13HOANALYSIS FOR 13+14H VARIABLES AND14+7H GROUPS)
      WRITE(6,9)
    9 FORMAT(1H0,25(5H=====))
      DO 7 J=1,M
      T(J)=0.0
    . DO 7 K=1.M
      B(J,K)=0.0
    7 C(J.K)=0.0
      H1LOGS=0.0
      GA15=0.0
      FA1S=0.0
      N = 0
C
      DO 19 IG=1 KG
      READ(2:102)Y
      ISCN(IG)=Y(1)
      IWS(IG)=Y(2)
      NG=Y(3)
      DO 1124 I=1,4
1124 READ(2,102)(SDA(I,K),K=1,4)
      READ(2:102)(SM(K):K=1:4)
      ENG=NG
      N=N+NG
      WRITE(6.9)
      WRITE(6 + 10) IG + NG
  10 FORMAT(/1X) GROUP 13,1
                                  NG= (17)
      WRITE(6,1104) ISCN(IG), IWS(IG)
1104 FORMAT(/1X, 'ERTS SCENE', 15, '
                                     WATERSHED 1 + 15)
```

```
DO 11 J=1.M
       \{(L\}VN\}M2=\{L\}U
      DO 11 K=1.M
   11 A(J \cdot K) = SDA(NV(J) \cdot NV(K))
       DO 12 J=1,M
      (U)U+(U)T=(U)T
       DO 12 K=1.M
   12 C(J_{\bullet}K) = C(J_{\bullet}K) + A(J_{\bullet}K)
       DO 13 J=1.M
      DO 13 K=1.M
      A(J_*K)=A(J_*K)=U(J) * U(K) / ENG
      B(J_*K)=B(J_*K)+A(J_*K)
   13 A(J_*K)=A(J_*K) / (ENG-1.0)
       DO 14 J=1.M
       U(J) = U(J) / ENG
   14 W(J)=SQRT(A(J*J))
      WRITE(6,15)1G
   15 FORMAT(17HOMEANS FOR GROUP 14)
      WRITE(6,16) (
                         U(J) . J=1.M)
   16 FORMAT(1H0+10(3X+F7-2))
      WRITE(1,102)(U(J),J=1,M)
   30 FORMAT(4H ROWI3,3X, 5E14.7 / (10X,5E14.7))
      WRITE(6,17)
   17 FORMAT(21HOSTANDARD DEVIATIONS )
C
      WRITE(6,16)(W(J),J=1,M)
      DO 1004 J=1,M
1004 WRITE(8,102)(A(J,K),K=J,M)
      CALL MATINV(A .M .DET)
      WRITE(6,18) DET
   18 FORMAT(26HODISPERSION DETERMINANT = E14.4)
      H1LOGS=H1LOGS+((ENG-1.0) *ALOG (DET))
      FA1S=FA1S+(1.0/(ENG-1.0))
      GA1S=GA1S+(1.0/((ENG-1.0)**2))
   19 WRITE(6.91
```

```
REWIND 2
      REWIND 8
C
C
      EN≖N
      DO 20 J=1:M
      DO 20 K=1.M
      A(J,K)=C(J,K)-T(J) * T(K)/EN
      D(J+K)=A(J+K)
   20 C(J,K)=B(J,K) / (EN=EKG)
      DO 21 J=1.M
      T(J)=T(J)/EN
   21 U(J) = SQRT (C(J.J))
      WRITE(6,22)
   22 FORMAT(23HOMEANS FOR TOTAL SAMPLE)
      WRITE(6:16)
                          T(J) = J=1 \cdot M
                    (
      KGT=KG + 1
      WRITE(1,102)(T(J),J=1,M)
      REWIND 1
      WRITE(6,23)
   23 FORMAT(35H0POOLED-SAMPLES STANDARD DEVIATIONS
      WRITE(6,16)(U(J),J=1,M)
      WRITE(6.9)
      WRITE(6.38)
   38 FORMAT(9HOT MATRIX)
      DO 34 J=1.M
      WRITE(6,30)J, (A(J,K),K=J,M)
   34 WRITE(3,102)(A(J,K),K=J,M)
      REWIND 3
      WRITE(6.9)
         35 J=1,M
      DO 35 K=1 M
   35 A(J,K)=A(J,K)=B(J,K)
      A IS NOW THE A (AMONG-GROUPS SSCP) MATRIX. B IS NOW THE W (WITHIN
C
      GROUPS SSCP) MATRIX. C IS NOW THE POOLED-GROUPS DISPERSION EST.
```

```
C
      WRITE(6,28)
   28 FORMAT(9HOA MATRIX)
      DO 29 J=1.M
   29 WRITE(6,30) J, (A(J,K), K=J,M)
      WRITE(6,9)
C
      WRITE(6.31)
   31 FORMAT(9HOW MATRIX)
      DO 32 J=1.M
      WRITE(6,30)J,(B(J,K),K=J,M)
   32 WRITE(4,102)(B(J,K),K=J,M)
      REWIND 4
      WRITE(6,9)
C
     CALL MATINV(C.M.DET)
C
     DISPERSION MATRIX STORED ON DISK FILE.
      WRITE(6,1006)
1006 FORMAT( OC MATRIX )
      DO 33 J=1.M
  33 WRITE(6,30)J,(C(J,K),K=J,M)
C
     WRITE(6,18) DET
     H1LOG=(EN-EK) * ALOG (DET)
     XMM=H1LOG=H1LOGS
     F1==5 * (EK-1=0) * EM * (EM+1=0)
     AlA=(FA1S=(1.0/(EN=EK)))*((2.0 * (EM*EM))+(3.0 * EM)=1.0)
     A1=A1A/(6.0 * (EK = 1.0) * (EM+1.0))
     A2=(GA15 -(1.0 /(EN-EK)**2)) * ((EM-1.0) * (EM+2.0))
    C/(6.0 *(EK-1.0))
     DIF=A2-A1 * A1
     IF(DIF) 24,24,25
  24 F2=(F1+2.0)/(A1 * A1=A2)
     B1=F2 / (1.0 -A1+(2.0/F2))
     F = (F2 * XMM) / (F1 * (B1 + XMM))
```

```
GO TO 45
    25 F2=(F1+2.0)/DIF
       B1=F1 / (1.0-A1 - (F1 / F2))
       F=XMM/B1
    45 NDF1=F1
       NDF2=F2
       WRITE(6,26) XMM.F
    26 FORMAT(47HOFOR TEST OF H1 (EQUALITY OF DISPERSIONS), M = F10.3,
      C10H AND F = F10.3
       WRITE(6,27) NDF1,NDF2
    27 FORMAT(15HOFOR F, NDF1 = 13, 12H AND NDF2 = 19)
       WRITE(6.9)
       N1=EKG-1.0
       N2=EN⇒EKG
       WRITE(6.9)
      WRITE(6,40)N1,N2
   40 FORMAT(34HOUNIVARIATE F-RATIOS, WITH NDF1 = 13,12H AND NDF2 = 16)
       WRITE(6.9)
      WRITE(6,41)
   41 FORMAT(71HOVARIABLE AMONG MEAN SQ WITHIN MEAN SQ
                                                               F-RATIO
     C
           ETA SQUARE)
      DO 42 J=1.M
      ((L_{\varepsilon}L)B + (L_{\varepsilon}L)A) / (L_{\varepsilon}L)A=QSAT3
      AMS=A(J.J) / (EKG-1.0)
      WMS=B(J.J) / (EN-EKG)
      F=AMS/WMS
   42 WRITE(6,43)J,AMS,WMS,F,ETASQ
   43 FORMAT(3X+13+5X+F9+2+11X+F9+2+10X+F7+2+8X+F5+4)
      WRITE(6.9)
C
      CALL MATINV(B + M + DETW)
      DETW IS DETERMINANT OF POOLED-SAMPLES DEVIATION SSCP MATRIX. W.
C
      CALL MATINV(D+M+DETT)
      DETT IS DETERMINANT OF TOTAL SAMPLE DEVIATION SSCP MATRIX. T.
C
```

```
XL=DETW/DETT
   YL=1.0-XL
   WRITE(6,46)XL,YL
46 FORMAT( OWILKS LAMBDA = 1.F7.4. GENERALIZED CORRELATION RATIO.
  1 ETA SQUARE = '.F5.4)
   IF(M-2)47,47,49
47 IF(KG-3) 48,48,49
48 YL=XL
   F1=2.0
   F2=EN-3.0
   GO TO 50
49 SL=SQRT(((EM * EM) * ((EKG - 1.0)**2) - 4.0) / ((EM * EM) +
  2 \{(EKG - 1.0)**2) - 5.0)\}
   YL=XL ** (I.0 / SL)
   PL=(EN=1.0) - ((EM+EKG) / 2.0)
   QL=-((EM *(EKG -1.0))-2.0) / 4.0
   RL=(EM * (EKG-1.0)) / 2.0
   F1=2.0 * RL
   F2=(PL * SL)+(2.0 * QL)
50 N1=F1
 N2=F2
   F=((1.0-YL) / YL) * (F2 / F1)
   WRITE(6,51)
51 FORMAT(45HOF-RATIO FOR H2; OVERALL DISCRIMINATION; = F9.2)
   WRITE(6.52) N1.N2
52 FORMAT('ONDF1 = '+13+' AND NDF2 = '+19)
   WRITE(6.9)
   KC=0
  CALL DISCMX
  GO TO 1
53 STOP
   END
```

MATINV

```
SUBROUTINE MATINV(A,M,DET)
   DIMENSION A(20:20) . IPVT(100) . PVT(100) . IND(100:2)
   DET=1.
   DO 1 J=1.M
 1 \text{ IPVT(J)=0}
   DO 10 I=1.M
   AMAX=0.0
   DO 5 J=1.M
   IF(IPVT(J)=1)2,5,2
 2 DO 5 K=1.M
   IF(IPVT(K)-1)3,5,20
 3 IF(ABS(AMAX)-ABS(A(J+K)))4,5,5
 4 IROW=J
   ICOL=K
   AMAX=A(J,K)
 5 CONTINUE
   IPVT(ICOL)=IPVT(ICOL)+1
   IF(IROW-ICOL)6,8,6
 6 DET=-DET
   DO 7 L=1.M
   SWAP=A(IROW.L)
   A(IROW,L)=A(ICOL,L)
 7 A(ICOL,L)=SWAP
 8 IND(I:1)=IROW
   IND(I+2)=ICOL
   PVT(I)=A(ICOL+ICOL)
   DET=DET*PVT(I)
   A(ICOL, ICOL) = 1.
   DO 9 L=1.M
 9 A(ICOL,L)=A(ICOL,L)/PVT(I)
   DO 10 L1=1 .M
   IF(L1-ICOL)11,10,11
11 SWAP=A(L1,ICOL)
   A(L1, ICOL) = 0.0
```

MATINY CONTINUED

```
DO 12 L=1.M

12 A(L1.L)=A(L1.L)-A(ICOL.L)*SWAP

10 CONTINUE
    DO 20 I=1.M
    L=M+1-I
    IF(IND(L.1)-IND(L.2))13.20.13

13 IROW=IND(L.1)
    ICOL=IND(L.2)
    DO 20 K=1.M
    SWAP=A(K.IROW)
    A(K.IROW)=A(K.ICOL)
    A(K.ICOL)=SWAP

20 CONTINUE
    RETURN
    END
```

SPLIT

```
ENT
                SPLIT
SPLIT DC
                *-*
       STX
             1 XR1+1
       STX
             2 XR2+1
       STX
             3 XR3+1
       LDX
            II SPLIT
      LD
             1 0
       STO
               ADD1+1
      LD
             1 1
       STO
               ADD2+1
      LD
            11 2
       SLA
       ST0
            I1 2
       STO
               COUNT+1
      MDX
             1 3
       STX
             1 BACK+1
ADD1
      LDX
            L1 *-*
ADD2
      LDX. L2 *-*
COUNT LDX
            L3 *-*
LOOP
      SLT
                16
      LD
             1 0
      RTE
               16
      SLT
                8
      STO
             2 0
      MDX
             2 -1
      SLA
               16
      SLT
               8
      STO
             2 0
      MDX
      MDX
      MDX
      MDX
XR1
      LDX
XR2
      LDX
```

SPLIT CONTINUED

XRO BACK LDX BSC END

DRIGINAL PAGEJISS
DR POOR QUALITY

```
ENT
HALF
        DC
        STX
               1 XR1+1
        STX
               2 XR2+1
        STX
               3 XR3+1
        LDX
              II HALF
       LD
STO
               1 0
                  ADD1+1
        LD
               1 1
              ADD2+1
I1 2
COUNT+1
        STO
       LD
STO
        SLA
       STO
              I1 2
       MDX
                  3
       STX
               1 BACK+1
       LDX
ADD1
              L1
ADD2
       LDX
COUNT
       LDX
              L3
LOOP
       LD
               1 0
       SRT
                  8
       STO
               2 0
       \mathsf{XCH}
       SRT
                  8
       STO
       MDX
       MDX
       MDX
       MDX
                  LOOP
XR1
       LDX
XR2
       LDX
XR3
       LDX
       BSC
END
BACK
```